Modern understanding of the role of calpains in muscles

封面

如何引用文章

全文:

详细

Relevance. The study and understanding of the physiological processes that occur in muscles during physical activity is a crucial area in modern sports physiology. As our theoretical and practical knowledge expands, we realize that the classical ideas about these physiological processes under stress conditions do not provide complete information. To fully comprehend these processes, we need to conduct further analysis and systematize the existing data. This will help us identify key elements that we can influence to regulate the direction and extent of certain physiological processes. One such candidate for this regulation is the calpain protein family (CAPN). Initially, they were associated with regulating signal transmission, but now they are considered proteases involved in the turnover of myofibrillar protein and the proteolytic cleavage of sarcomeric and cytoskeletal proteins. CAPNs are often seen as «harmful» degrading proteases in pathological conditions, such as cardiovascular diseases. However, in reality, they are processing proteases rather than degrading ones. They differ from other major intracellular proteolytic components because they act through proteolytic processing, causing changes in protein activity, localization, or structure. For example, CAPNs can regulate the activity of NOS by suppressing the production of nitric oxide during muscle contractions. This helps prevent the negative consequences caused by excess nitric oxide production. They also reduce the contractile activity of muscles by acting on structures called «triads». Calpains play a significant role in the reparative processes of muscles after physical activity. They regulate the processes of cell membrane repair and the restructuring of protein components in muscle fibers. Another notable difference from classical proteolysis systems, such as ubiquitin - proteasome and autophagic systems that require ATP, is that calpains are ATP-independent. However, uncontrolled activity of calpains can trigger a cascade of proapoptotic systems leading to apoptosis and the death of myocytes. Conclusion . Calpains play an important role in the physiological processes that occur in muscles both in a healthy state and in various pathologies. Thus, the functions of calpains are not limited only to proteolysis (protein breakdown) - they are much broader. Therefore, the study of these enzymes is an important area of research. It will help us identify informative targets for developing treatment methods and monitoring muscle health after intense exercise.

作者简介

Dmitriy Muzhenya

Adyghe State University

编辑信件的主要联系方式.
Email: dmuzhenya@mail.ru
ORCID iD: 0000-0002-4379-0634
SPIN 代码: 7910-6021
Maikop, Russian Federation

Sergey Lysenkov

Maikop State Technological University

Email: dmuzhenya@mail.ru
ORCID iD: 0000-0003-1179-8938
SPIN 代码: 6665-0686
Maikop, Russian Federation

Aminat Tuguz

Adyghe State University

Email: dmuzhenya@mail.ru
ORCID iD: 0000-0002-7493-7192
SPIN 代码: 5351-3387
Maikop, Russian Federation

Dmitriy Shumilov

Adyghe State University

Email: dmuzhenya@mail.ru
ORCID iD: 0000-0001-9636-6311
SPIN 代码: 7173-2685
Maikop, Russian Federation

参考

  1. Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Comprehensive Physiology. 2022;12(2):3193—3279. doi: 10.1002/cphy.c200033
  2. Quadrilatero J, Alway SE, Dupont-Versteegden EE. Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Applied Physiology, Nutrition, and Metabolism. 2011;36(5):608—617. doi: 10.1139/h11-064
  3. Sanford JA, Nogiec CD, Lindholm ME, Adkins JN, Amar D, Dasari S, Drugan JK, Fernández FM, Radom-Aizik S, Schenk S, Snyder MP, Tracy RP, Vanderboom P, Trappe S, Walsh MJ. Molecular Transducers of Physical Activity Consortium. Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell. 2020;181(7):1464—1474. doi: 10.1016/j.cell.2020.06.004.
  4. Fonova EA, Zhalsanova IZ, Skryabin NA. Current aspects and approaches to molecular diagnostics of hereditary neuromuscular diseases. RUDN Journal of Medicine. 2024;28(2):282—292. doi: 10.22363/2313-0245-2024-28-1-282-292
  5. Solomon V, Goldberg AL. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. Journal of Biological Chemistry. 1996;271(43):26690—26697. doi: 10.1074/jbc.271.43.26690
  6. Sorimachi H, Ono Y. Regulation and physiological roles of the calpain system in muscular disorders. Cardiovascular Research. 2012;96(1):11—22. doi: 10.1093/cvr/cvs157
  7. Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. International Journal of Sports Medicine. 2020;41(14):994—1008. doi: 10.1055/a‑1199-7662
  8. Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: Challenges and potential. Nature Reviews Drug Discovery. 2016;15:854—876. doi: 10.1038/nrd.2016.212
  9. Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opinion on Drug Discovery. 2020;15(4):471—486. doi: 10.1080/17460441.2020.1722638
  10. Murphy RM, Verburg E, Lamb GD. Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle. Journal of Physiology. 2006;576(Pt2):595—612. doi: 10.1113/jphysiol.2006.114090
  11. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020;12(1): e1462. doi: 10.1002/wsbm.1462
  12. Campbell RL, Davies PL. Structure-function relationships in calpains. Biochemical Journal. 2012;447(3):335—351. doi: 10.1042/BJ20120921
  13. Saez ME, Ramirez-Lorca R, Moron FJ, Ruiz A. The therapeutic potential of the calpain family: new aspects. Drug Discovery Today. 2006;11(19—20):917—923. doi: 10.1016/j.drudis.2006.08.009
  14. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771—776. doi: 10.1016/j.cell.2010.03.006
  15. Edmunds T, Nagainis PA, Sathe SK, Thompson VF, Goll DE. Comparison of the autolyzed and unautolyzed forms of mu- and m-calpain from bovine skeletal muscle. Biochimica et Biophysica Acta. 1991;1077(2):197—208. doi: 10.1016/0167-4838 (91) 90059-9
  16. Beckmann JS, Spencer M. Calpain 3, the «gatekeeper» of proper sarcomere assembly, turnover and maintenance. Neuromuscular Disorders. 2008;18(12):913—921. doi: 10.1016/j.nmd.2008.08.005.
  17. Kramerova I, Kudryashova E, Ermolova N, Saenz A, Jaka O, López de Munain A, Spencer MJ. Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3. Human Molecular Genetics. 2012;21:3193—3204. doi: 10.1093/hmg/dds144
  18. Goll DE, Thompson VF, Li H, Wei W, Cong J The calpain system. Physiological Reviews. 2003;83:731—801. doi: 10.1152/physrev.00029.2002
  19. Baki A, Tompa P, Alexa A, Molnár O, Friedrich P. Autolysis parallels activation of mu-calpain. Biochemical Journal. 1996;318(Pt3):897—901. doi: 10.1042/bj3180897
  20. Nagainis PA, Wolfe FH, Sathe SK, Goll DE. Autolysis of the millimolar Ca2+-requiring form of the Ca2+-dependent proteinase from chicken skeletal muscle. Biochemistry and Cell Biology. 1988;66(10):1023—1031. doi: 10.1139/o88-118
  21. Murphy RM. Calpains, skeletal muscle function and exercise. Clinical and Experimental Pharmacology and Physiology. 2010;37(3):385—391. doi: 10.1111/j.1440-1681.2009.05310.x
  22. Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S, Tominaga M, Kuroda T, Nishizuka Y. Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). Journal of Biological Chemistry. 1989;264(7):4088—4092. PMID: 2537303
  23. Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK. Oxidation enhances myofibrillar protein degradation via calpain and caspase‑3. Free Radical Biology and Medicine. 2010;49(7):1152—1160. doi: 10.1016/j.freeradbiomed.2010.06.025
  24. Raastad T, Owe SG, Paulsen G, Enns D, Overgaard K, Crameri R, Kiil S, Belcastro A, Bergersen L, Hallén J. Changes in calpain activity, muscle structure, and function after eccentric exercise. Medicine & Science in Sports & Exercise. 2010;42(1):86—95. doi: 10.1249/MSS.0b013e3181ac7afa
  25. Purintrapiban J, Wang MC, Forsberg NE. Degradation of sarcomeric and cytoskeletal proteins in cultured skeletal muscle cells. Comparative Biochemistry and Physiology B. 2003;136(3):393—401. doi: 10.1016/s1096-4959(03)00201‑x
  26. Huang J, Forsberg NE. Role of calpain in skeletal-muscle protein degradation. Proceedings of the National Academy of Sciences USA. 1998;95(21):12100—12105. doi: 10.1073/pnas.95.21.12100
  27. Koohmaraie M. The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie. 1992;74(3):239—245. doi: 10.1016/0300-9084(92)90122‑u
  28. Bartoli M, Richard I. Calpains in muscle wasting. International Journal of Biochemistry & Cell Biology. 2005;37(10):2115—2133. doi: 10.1016/j.biocel.2004.12.012
  29. Goll DE, Neti G, Mares SW, Thompson VF. Myofibrillar protein turnover: the proteasome and the calpains. Journal of Animal Science. 2008;86(14): E19—35. doi: 10.2527/jas.2007-0395
  30. Kumar V, Atherton P, Smith K, Rennie MJ. Human muscle protein synthesis and breakdown during and after exercise. Journal of Applied Physiology (1985). 2009;106(6):2026—2039. doi: 10.1152/japplphysiol.91481.2008
  31. Lek A, Evesson FJ, Lemckert FA, Redpath GM, Lueders AK, Turnbull L, Whitchurch CB, North KN, Cooper ST. Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair. Journal of Neuroscience. 2013;33(12):5085—5094. doi: 10.1523/JNEUROSCI.3560-12.2013
  32. Belcastro AN. Skeletal muscle calcium-activated neutral protease (calpain) with exercise. Journal of Applied Physiology (1985). 1993;74(3):1381—1386. doi: 10.1152/jappl.1993.74.3.1381
  33. Lametsch R, Roepstorff P, Møller HS, Bendixen E. Identification of myofibrillar substrates for μ-calpain. Meat Science. 2004;68(4):515—521. doi: 10.1016/j.meatsci.2004.03.018
  34. Roche JA, Lovering RM, Bloch RJ. Impaired recovery of dysferlin-null skeletal muscle after contraction-induced injury in vivo. Neuroreport. 2008;19(16):1579—1584. doi: 10.1097/WNR.0b013e328311ca35
  35. Indo HP, Yen HC, Nakanishi I, Matsumoto K, Tamura M, Nagano Y. A mitochondrial superoxide theory for oxidative stress diseases and aging. Journal of Clinical Biochemistry and Nutrition. 2015;56(1):1—7. doi: 10.3164/jcbn.14-42
  36. Lysenkov SP, Muzhenya DV, Tuguz AR, Urakova TU, Shumilov DS, Thakushinov IA, Thakushinov RA, Tatarkova EA, Urakova DM. Cholinergic deficiency in the cholinergic system as a pathogenetic link in the formation of various syndromes in COVID‑19. Chinese Journal of Physiology. 2023;66(1):1—13. doi: 10.4103/cjop.CJOP-D‑22-00072
  37. Averna M, Stifanese R, De Tullio R, Salamino F, Bertuccio M, Pontremoli S, Melloni E. Proteolytic degradation of nitric oxide synthase isoforms by calpain is modulated by the expression levels of HSP90. FEBS Journal. 2007;274(23):6116—6127. doi: 10.1111/j.1742-4658.2007.06133.x
  38. Bellocq A, Doublier S, Suberville S, Perez J, Escoubet B, Fouqueray B, Puyol DR, Baud L. Somatostatin increases glucocorticoid binding and signaling in macrophages by blocking the calpain-specific cleavage of Hsp 90. Journal of Biological Chemistry. 1999;274(52):36891—36896. doi: 10.1074/jbc.274.52.36891
  39. Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. American Journal of Physiology-Cell Physiology. 2010;298:365—376. doi: 10.1152/ajpcell.00365.2009
  40. Franzini-Armstrong C, Jorgensen AO. Structure and development of E-C coupling units in skeletal muscle. Annual Review of Physiology. 1994;56:509—534. doi: 10.1146/annurev.ph.56.030194.002453
  41. Kanzaki K, Watanabe D, Kuratani M, Yamada T, Matsunaga S, Wada M. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle. Journal of Applied Physiology (1985). 2017;122(2):396—405. doi: 10.1152/japplphysiol.00270.2016
  42. Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Frontiers in Physiology. 2021;12:718404. doi: 10.3389/fphys.2021.718404
  43. Hall DD, Takeshima H, Song LS. Structure, Function, and Regulation of the Junctophilin Family. Annual Review of Physiology. 2024;86:123—147. doi: 10.1146/annurev-physiol‑042022-014926
  44. Michel LY, Hoenderop JG, Bindels RJ. Calpain‑3‑mediated regulation of the Na+-Ca²+ exchanger isoform 3. Pflugers Archiv European Journal of Physiology. 2016;468(2):243—55. doi: 10.1007/s00424-015-1747-8
  45. Vermaelen M, Sirvent P, Raynaud F, Astier C, Mercier J, Lacampagne A, Cazorla O. Differential localization of autolyzed calpains 1 and 2 in slow and fast skeletal muscles in the early phase of atrophy. American Journal of Physiology-cell Physiology. 2007;292(5):1723—1731. doi: 10.1152/ajpcell.00398.2006
  46. Ojima K, Ono Y, Ottenheijm C, Hata S, Suzuki H, Granzier H, Sorimachi H. Non-proteolytic functions of calpain‑3 in sarcoplasmic reticulum in skeletal muscles. Journal of Molecular Biology. 2011;407(3):439—449. doi: 10.1016/j.jmb.2011.01.057
  47. Jude JA, Wylam ME, Walseth TF, Kannan MS. Calcium signaling in airway smooth muscle. Proceedings of the American Thoracic Society. 2008;5(1):15—22. doi: 10.1513/pats.200704-047VS
  48. Chen L, Tang F, Gao H, Zhang X, Li X, Xiao D. CAPN3: A musclespecific calpain with an important role in the pathogenesis of diseases (Review). International Journal of Molecular Medicine. 2021;48(5):203. doi: 10.3892/ijmm.2021.5036
  49. Aguti S, Gallus GN, Bianchi S, Salvatore S, Rubegni A, Berti G, Formichi P, De Stefano N, Malandrini A, Lopergolo D. Novel Biomarkers for Limb Girdle Muscular Dystrophy (LGMD). Cells. 2024;13(4):329. doi: 10.3390/cells13040329
  50. Fougerousse F, Bullen P, Herasse M, Lindsay S, Richard I, Wilson D, Suel L, Durand M, Robson S, Abitbol M, Beckmann JS, Strachan T. Human-mouse differences in the embryonic expression patterns of developmental control genes and disease genes. Human Molecular Genetics. 2000;9(2):165—173. doi: 10.1093/hmg/9.2.165
  51. Şahin İO, Karataş E, Demir M, Tan B, Per H, Özkul Y, Dündar M. A retrospective study on the clinical and molecular outcomes of calpainopathy in a Turkish patient cohort. Turkish Journal of Medical Sciences. 2023;54(1):86—98. doi: 10.55730/1300-0144.5769
  52. Kramerova I, Torres JA, Eskin A, Nelson SF, Spencer MJ. Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy. Human Molecular Genetics. 2018;27:1642—1653. doi: 10.1093/hmg/ddy071
  53. Lynch K, Fernandez G, Pappalardo A, Peluso JJ. Basic fibroblast growth factor inhibits apoptosis of spontaneously immortalized granulosa cells by regulating intracellular free calcium levels through a protein kinase Cdelta-dependent pathway. Endocrinology. 2000;141(11):4209—4217. doi: 10.1210/endo.141.11.7742
  54. Villani KR, Zhong R, Henley-Beasley CS, Rastelli G, Boncompagni S, Barton ER, Wei-LaPierre L. Loss of calpain 3 dysregulates store-operated calcium entry and its exercise response in mice. BioRxiv. 2024:2024.01.12.575391. doi: 10.1101/2024.01.12.575391
  55. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology. 2000;1(1):11—21. doi: 10.1038/35036035
  56. Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. Journal of Biological Chemistry. 1989;264(3):1608—1615. PMID: 2912976
  57. Ernst IM, Fliegert R, Guse AH. Adenine Dinucleotide Second Messengers and T-lymphocyte Calcium Signaling. Frontiers in Immunology. 2013;4:259. doi: 10.3389/fimmu.2013.00259
  58. Baylor SM, Hollingworth S. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. Journal of Physiology. 2003;551(Pt1):125—138. doi: 10.1113/jphysiol.2003.041608
  59. Galione A, Parrington J, Funnell T. Physiological roles of NAADP-mediated Ca2+ signaling. Science China Life Sciences. 2011;54(8):725—732. doi: 10.1007/s11427-011-4207-5
  60. Guse AH. Enzymology of Ca2+-Mobilizing Second Messengers Derived from NAD: From NAD Glycohydrolases to (Dual) NADPH Oxidases. Cells. 2023;12(4):675. doi: 10.3390/cells12040675.
  61. Lee HC, Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. Journal of Biological Chemistry. 1995;270(5):2152—2157. doi: 10.1074/jbc.270.5.2152
  62. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A. NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell. 2002;111(5):703—708. doi: 10.1016/s0092-8674 (02) 01082-6
  63. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature. 2009;459(7246):596—600. doi: 10.1038/nature08030
  64. Aley PK, Singh N, Brailoiu GC, Brailoiu E, Churchill GC. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger in muscarinic receptor-induced contraction of guinea pig trachea. Journal of Biological Chemistry. 2013;288(16):10986—10993. doi: 10.1074/jbc.M113.458620
  65. Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR. Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappab activation. Journal of Biological Chemistry. 1999;274:787—794. doi: 10.1074/jbc.274.2.787
  66. Iguchi-Hashimoto M, Usui T, Yoshifuji H, Shimizu M, Kobayashi S, Ito Y, Murakami K, Shiomi A, Yukawa N, Kawabata D, Nojima T, Ohmura K, Fujii T, Mimori T. Overexpression of a minimal domain of calpastatin suppresses IL‑6 production and Th17 development via reduced NF-κB and increased STAT5 signals. PLoS One. 2011;6: e27020. doi: 10.1371/journal.pone.0027020
  67. Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S, Tominaga M, Kuroda T, Nishizuka Y. Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). Journal of Biological Chemistry. 1989;264(7):4088—4092.
  68. Vasilev F, Limatola N, Chun JT, Santella L. Contributions of suboolemmal acidic vesicles and microvilli to the intracellular Ca2+ increase in the sea urchin eggs at fertilization. International Journal of Biological Sciences. 2019;15(4):757—775. doi: 10.7150/ijbs.28461
  69. Talbert EE, Smuder AJ, Min K, Kwon OS, Powers SK. Calpain and caspase‑3 play required roles in immobilization-induced limb muscle atrophy. Journal of Applied Physiology (1985). 2013;114(10):1482—1489. doi: 10.1152/japplphysiol.00925.2012
  70. Lovochkina ED. Diagnostic and prognostic role of cardiac pathology multicomplex autoimmune biological markers. RUDN Journal of Medicine. 2023;27(1):71—82. doi: 10.22363/2313-0245-2023-27-1-71-82
  71. Mandic A, Viktorsson K, Strandberg L, Heiden T, Hansson J, Linder S, Shoshan MC. Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Molecular and Cellular Biology. 2002;22(9):3003—3013. doi: 10.1128/MCB.22.9.3003-3013.2002
  72. Kobayashi S, Yamashita K, Takeoka T, Ohtsuki T, Suzuki Y, Takahashi R, Yamamoto K, Kaufmann SH, Uchiyama T, Sasada M, Takahashi A. Calpain-mediated X-linked inhibitor of apoptosis degradation in neutrophil apoptosis and its impairment in chronic neutrophilic leukemia. Journal of Biological Chemistry. 2002;277(37):33968—33977. doi: 10.1074/jbc.M203350200
  73. Bernardi P, Petronilli V, Di Lisa F, Forte M. A mitochondrial perspective on cell death. Trends in Biochemical Sciences. 2001;26(2):112—7. doi: 10.1016/s0968—0004(00)01745‑x
  74. Todt F, Cakir Z, Reichenbach F, Emschermann F, Lauterwasser J, Kaiser A, Ichim G, Tait SW, Frank S, Langer HF, Edlich F. Differential retrotranslocation of mitochondrial Bax and Bak. EMBO Journal. 2015;34(1):67—80. doi: 10.15252/embj.201488806
  75. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differentiation. 2006;13(9):1423—1433. doi: 10.1038/sj.cdd.4401950
  76. Polster BM, Basañez G, Etxebarria A, Hardwick JM, Nicholls DG. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. Journal of Biological Chemistry. 2005;280(8):6447—54. doi: 10.1074/jbc.M413269200
  77. Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene. 2004;23(16):2785—2796. doi: 10.1038/sj.onc.1207517
  78. Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One. 2012;7(1): e30348. doi: 10.1371/journal.pone.0030348

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».