Soil microbiocoenosis in the agricultural environment as a dynamic system: primary results of the assessment of changes

Cover Page

Cite item

Full Text

Abstract

Soil biota is characterized by high structural, taxonomic and functional diversity and determines the leading trends in the process of soil formation, while the microorganisms content in the soil varies widely depending on its chemical composition, humidity, temperature, pH and other properties. On the other hand, the soil microbiome has a significant impact on soil fertility, participating in the conversion of nutrients inaccessible to plants into usable forms. Soil microbiota can promote or inhibit plant growth. The purpose of this work is to conduct a comparative analysis of the leading representatives of the microbiome for soil samples from the territory of the model field of the peasant (farm) economy Tsirulev E.P. (Privolzhsky District of the Samara Region). Soil sampling was carried out in accordance with the methods of sampling and sample preparation for chemical, bacteriological, helminthological analysis. For comparison, 15 samples were taken from the same points of the field in different years – 2019 and 2020. Soil suspensions were prepared according to the serial dilution method. Sowing dilutions was carried out on potato-glucose agar. Microorganisms were identified by microscopic method. The test result was calculated separately for fungi and bacteria. The ratio of fungi and bacteria in % to their total number was determined by calculating the number (N) of microorganisms present in the sample. Chemical analysis of soil samples was carried out according to the following parameters: water pH, salt pH, mass fraction of organic matter, mobile potassium and mobile phosphorus, exchangeable calcium and exchangeable magnesium. Laboratory study of soil samples taken on a model field from the territory of a peasant (farm) economy Tsirulev E.P. showed a fairly stable level of water and salt pH values, moderate variability in the content of organic matter, mobile potassium, magnesium and calcium, with a high heterogeneity of the spatial distribution of mobile phosphorus in the soil. Identification of the presence and abundance in soil samples of typical representatives of soil microbiocoenosis (12 broad-spectrum phytopathogens and 2 phytopathogen antagonists) made it possible to detect microorganisms: – common in this soil environment in both years of research (causative agents of phomosis, yellow mucous bacteriosis); – found for samples of one year in the minimum number of samples, not detected in another year (causative agent of verticillium, gray mold) or significantly increased their presence (causative agents of rhizoctoniosis, anthracnose, cladosporiosis). The presence in a significant proportion of soil samples, from 20 to 50–80% of the samples, was noted for a significant group of objects (Alternaria, Fusarium, Aspergillus, Penicillium, Rhisopus), in both years of research, the presence of the phytopathogen antagonist Trichoderma was detected in all samples. The question of the connection between the revealed changes in the composition of the soil microbiome and the species of plants that were cultivated in this field during a given growing season requires additional data to be clarified, which we will do in subsequent years. Nevertheless, the primary data obtained confirm the existing ideas about the lability of soil microbiocoenosis as a dynamic system that changes its state in response to the impact of abiotic (temperature, humidity) and biotic factors.

About the authors

Liliya V. Khalikova

Samara National Research University

Email: halikova.lilya@yandex.ru

postgraduate student of Ecology, Botany and Nature Protection Department

Russian Federation, Samara

Lyudmila M. Kavelenova

Samara National Research University

Author for correspondence.
Email: lkavelenova@mail.ru

doctor of biological sciences, professor, head of Ecology, Botany and Nature Protection Department

Russian Federation, Samara

References

  1. Добровольский Г.В., Никитин Е.Д. Экология почв: учение об экологических функциях почв: учебник. 2-е изд., уточ. и доп. М.: Издательство МГУ, 2012. 412 с.
  2. Стебаев И.В., Пивоварова Ж.Ф., Смоляков Б.С., Неделькина С.В. Общая биогеосистемная экология. Новосибирск: ВО «Наука»; Сибирская издательская фирма, 1993. 288 с.
  3. Дергачева М.И. Экология почв: итоги, проблемы, перспективы // Известия Уральского государственного университета. Серия 2: Гуманитарные науки. 2002. № 23. С. 53–61.
  4. Карпачевский Л.О. Экологическое почвоведение. М.: Геос, 2005. 336 с.
  5. Мирчинк Т.Г. Почвенные грибы как компонент биогеоценоза // Почвенные организмы как компоненты биогеоценоза / отв. ред. Е.Н. Мишустин. М.: Наука, 1984. С. 114–130.
  6. Мишустин Е.Н. Ассоциации почвенных микроорганизмов. М.: Наука, 1975. 107 с.
  7. Prabhakaran A., Meenatchi R., Pal S., Hassan S., Veera Bramhachari P., Kiran G.S., Selvin J. Soil microbiome: characteristics, impact of climate change and resilience // Understanding the Microbiome Interactions in Agriculture and the Environment / ed. P. Veera Bramhachari. Singapore: Springer, 2022. P. 285–313. doi: 10.1007/978-981-19-3696-8_15.
  8. State of knowledge of soil biodiversity – status, challenges and potentialities, Report 2020 // Rome: FAO. 2020. 616 p. doi: 10.4060/cb1928en.
  9. Станчева Й. Атлас болезней сельскохозяйственных культур. Т. 4. Болезни технических культур / пер. с болг. Г. Данаиловой. София–М.: Pensoft, 2003. 186 с.
  10. Виноградский С.Н. Микробиология почвы: проблемы и методы. Пятьдесят лет исследований. М.: Изд-во АН СССР, 1952. 792 с.
  11. Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. Биология почв: учебник. 3-е изд., испр. и доп. М.: Изд-во МГУ, 2005. 445 с.
  12. Заварзин Г.А. Лекции по природоведческой микробиологии / отв. ред. Н.Н. Колотилова. М.: Наука, 2003. 348 с.
  13. Звягинцев Д.Г. Некоторые концепции строения и функционирования комплекса почвенных микроорганизмов // Вестник МГУ. Сер. 17. Почвоведение. 1978. № 4. С. 48–56.
  14. Таргульян В.О., Соколова Т.А. Почва как биокосная природная система: «реактор», «память» и регулятор биосферных взаимодействий // Почвоведение. 1996. № 1. С. 34–47.
  15. Kaur A., Chaundhary A., Kaur A., Choundhary R., Kaushik R. Phospholipid fatty acid – a bioindicator of environment monitoring and assessment in soil ecosystem // Current science. 2005. Vol. 89, № 7. P. 1103–1112.
  16. Казеев К.Ш., Колесников С.И., Вальков В.Ф. Биология почв Юга России. Ростов-на-Дону: Изд-во ЦВВР, 2004. 350 с.
  17. Казеев К.Ш. Изменение биологической активности почв предгорий Северо-Западного Кавказа при антропогенном воздействии: дис. … канд. биол. наук. Ростов-на-Дону, 1996. 133 с.
  18. Coleman D.C., Mac Callaham A., Crossley D.A. Future Developments in Soil Ecology // Fundamentals of Soil Ecology. Third edition. Elsevier Science & Technology, 2018. P. 255–282. doi: 10.1016/b978-0-12-805251-8.00008-9.
  19. Халикова Л.В., Корчиков Е.С., Боровкова Н.В., Семкина О.В. Анализ антагонистической активности грибов рода Trichoderma в отношении некоторых фитопатогенных микромицетов // Теоретические и прикладные проблемы современной науки и образования: мат-лы междунар. науч.-практ. конф. Т. 1 (Курск, 24 мая 2021 г.). Курск, 2021. С. 486–493.
  20. ГОСТ 17.4.4.02-2017. Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа. М.: Стандартинформ, 2018. 10 с.
  21. Нетрусов А.И., Котова И.Б. Микробиология: учебник. 3-е изд., испр. М.: Академия, 2009. 352 с.
  22. Приготовление питательных сред и культивирование микроорганизмов: метод. указания / сост. А.П. Асташкина. Томск: Изд-во Томского политехнического университета, 2015. 19 с.
  23. ГОСТ 26423-85. Почвы. Методы определения удельной электрической проводимости, pH и плотного остатка водной вытяжки. М.: Стандартинформ, 2011. 6 с.
  24. ГОСТ 26483-85. Почвы. Приготовление солевой вытяжки и определение ее pH по методу ЦИНАО. М.: Издательство стандартов, 1985. 4 с.
  25. ГОСТ 26213-2021. Почвы. Методы определения органического вещества. М.: Российский институт стандартизации, 2021. 8 с.
  26. ГОСТ 26205-91. Почвы. Определение подвижных соединений фосфора и калия по методу Мачигина в модификации ЦИНАО. М.: Издательство стандартов, 1992. 10 с.
  27. ГОСТ 26204-91. Почвы. Определение подвижных соединений фосфора и калия по методу Чирикова в модификации ЦИНАО. М.: Издательство стандартов, 1992. 8 с.
  28. ГОСТ 26487-85. Почвы. Определение обменного кальция и обменного (подвижного) магния методами ЦИНАО. М.: Издательство стандартов, 1985. 13 с.
  29. Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M. The rhizosphere microbiome and plant health // Trends in Plant Science. 2012. Vol. 17, iss. 8. P. 478–486. DOI: 10. 1016/j.tplants.2012.04.001.
  30. Yu K., Pieterse C.M.J., Bakker P.A.H.M., Berendsen R.L. Beneficial microbes going underground of root immunity // Plant, Cell and Environment. 2019. Vol. 42, iss. 10. P. 2860–2870. doi: 10.1111/pce.13632.
  31. Bakker P.A.H.M., Berendsen R.L., Van Pelt J.A., Vismans G., Yu K., Li E., Van Bentum S., Poppeliers S.W.M., Sanchez Gil J.J., Zhang H., Goossens P., Stringlis I.A., Song Y., de Jonge R., Pieterse C.M.J. The soil-borne identity and microbiome-assisted agriculture: looking back to the future // Molecular Plant. 2020. Vol. 13, iss. 10. P. 1394–1401. doi: 10.1016/j.molp.2020.09.017.
  32. Philippot L., Raaijmakers J.M., Lemanceau P., van der Putten W.H. Going back to the roots: the microbial ecology of the rhizosphere // Nature Reviews Microbiology. 2013. Vol. 11. P. 789–799. doi: 10.1038/nrmicro3109.
  33. Weller D.M., Raaijmakers J.M., McSpadden Gardener B.B., Thomashow L.S. Microbial populations responsible for specific soil suppressiveness to plant pathogens // Annual Review of Phytopathology. 2002. Vol. 40. P. 309–348. doi: 10.1146/annurev.phyto.40.030402.110010.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рисунок 1 – Особенности погодных условий вегетационных периодов 2019 и 2020 гг. (по данным Приволжского УГМС для г. Самары). IV–IX – месяцы; 1–3 – декады

Download (85KB)
3. Рисунок 2 – Агрохимические показатели почвы, 2019 и 2020 гг.

Download (121KB)
4. Рисунок 3 – Значения коэффициента вариации для различных агрохимических показателей почвы, 2019 и 2020 гг.

Download (50KB)
5. Рисунок 4 – Особенности частоты выявления и концентрации различных представителей почвенного микробиома в образцах почвы модельного поля, 2019 и 2020 гг.

Download (124KB)

Copyright (c) 2023 Khalikova L.V., Kavelenova L.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies