Lateralized behavior of jackal-dog hybrid

Cover Page

Cite item

Full Text

Abstract

This paper examines the phenomenon of interhemispheric asymmetry, which underlies lateralization, using jackal-dog hybrid as an example. The aim of the work is to reveal the existence of a connection between the leading paw used and individual characteristics of dogs, such as sex, age, and percentage of jackal blood. The identification of such patterns can help to adjust or select a more effective method of training a working dog, which is the relevance of this work. Using the «first-pitch» method, it was found that of the 76 jackal-dog hybrid, 46 favored the right paw, 23 favored the left paw, and 7 used both paws equally. Among right-handed ones there are 31 females and 15 males, among left-handed ones there are 3 females and 20 males, and among ambidextrous ones, those who «have not decided» with the leading limb, there are 2 females and 5 males. In general, there is a correlation between the sex of the dog and severity of motor lateralization: females prefer the right limb more often than males, and males, in their turn, prefer the left limb more often than females. Among older dogs there are only jackal-dog hybrid with pronounced lateralization, i.e. only left- or right-handed dogs. As for the percentage of jackal blood and emotional functionality – no regularities were found.

About the authors

Margarita Sergeevna Kislaeva

Russian Timiryazev State Agrarian University

Email: mkislaeva@yandex.ru

student of Institute of Zootechnics and Biology

Russian Federation, Moscow

Ivan Gennadievich Blokhin

Russian Timiryazev State Agrarian University

Author for correspondence.
Email: blokhin.ivan96@gmail.com

assistant of Zoology Department

Russian Federation, Moscow

References

  1. Rogers L.J. Lateralization in vertebrates: Its early evolution, general pattern, and development // Advances in the Study of Behavior. 2002. Vol. 31. P. 107–161. doi: 10.1016/S0065-3454(02)80007-9.
  2. Rogers L.J. Asymmetry of brain and behavior in animals: Its development, function, and human relevance // Genesis. 2013. Vol. 52, iss. 6. P. 555–571. doi: 10.1002/dvg.22741.
  3. Rogers L.J. Hand and paw preferences in relation to the lateralized brain // Philosophical Transactions of the Royal Society B. 2009. Vol. 364, iss. 1519. P. 943–954. doi: 10.1098/rstb.2008.0225.
  4. Крылов В.В., Непомнящих В.А., Извеков Е.И., Изюмов Ю.Г., Чеботарева Ю.В. Асимметрия реакции избегания у плотвы Rutilus rutilus (Cyprinidae): корреляция с морфологической асимметрией // Зоологический журнал. 2008. Т. 87, № 5. С. 573–577.
  5. Dodson D.L., Stafford D., Forsythe C., Seltzer C.P., Ward J.P. Laterality in quadrupedal and bipedal prosimians: Reach and whole-body turn in the mouse lemur (Microcebus murinus) and the galago (Galago moholi) // American Journal of Primatology. 1992. Vol. 26, iss. 3. P. 191–202. doi: 10.1002/ajp.1350260305.
  6. Strockens F., Gunturkun O., Ocklenburg S. Limb preferences in non-human vertebrates // Laterality. 2013. Vol. 18, iss. 5. P. 536–575. doi: 10.1080/1357650x.2012.723008.
  7. MacNeilage P.F. Present status of the postural origins theory // Special Topics in Primatology. 2007. Vol. 5. P. 58–91. doi: 10.1016/s1936-8526(07)05003-8.
  8. Tan U. Paw preferences in dogs // International Journal of Neuroscience. 1987. Vol. 32, iss. 3–4. P. 825–829. doi: 10.3109/00207458709043336.
  9. Quaranta A., Siniscalchi M., Frate A., Vallortigara G. Paw preference in dogs: relations between lateralised behaviour and immunity // Behavioural Brain Research. 2004. Vol. 153, iss. 2. P. 521–525. doi: 10.1016/j.bbr.2004.01.009.
  10. Poyser F., Caldwell C., Cobb M. Dog paw preference shows lability and sex differences // Behavioural Processes. 2006. Vol. 73, iss. 2. P. 216–221. doi: 10.1016/j.beproc.2006.05.011.
  11. Batt L.S., Batt M.S., Baguley J.A., McGreevy P.D. The relationships between motor lateralization, salivary cortisol concentrations and behavior in dogs // Journal of Veterinary Behavior. 2009. Vol. 4, iss. 6. P. 216–222. doi: 10.1016/j.jveb.2009.02.001.
  12. Wells D.L. Lateralised behaviour in the domestic dog, Canis familiaris // Behavioural Processes. 2003. Vol. 61, iss. 1–2. P. 27–35. doi: 10.1016/s0376-6357(02)00161-4.
  13. Tomkins L.M., Thomson P.C., McGreevy P.D. First-stepping test as a measure of motor laterality in dogs (Canis familiaris) // Journal of Veterinary Behavior. 2010. Vol. 5, iss. 5. P. 247–255. doi: 10.1016/j.jveb.2010.03.001.
  14. van Alphen A., Bosse T., Frank I., Jonker C.M., Koeman F. Paw preference correlates to task performance in dogs // Proceedings of the 27th Annual Conference of the Cognitive Science Society. Vol. 27. Stresa, 2005. P. 2248–2253.
  15. Maes D.L., Herbin M., Hackert R., Bels V.L., Abourachid A. Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed // Journal of Experimental Biology. 2008. Vol. 221, iss. 1. P. 138–149. doi: 10.1242/jeb.008243.
  16. Gough W., McGuire B. Urinary posture and motor laterality in dogs (Canis lupus familiaris) at two shelters // Applied Animal Behaviour Science. 2015. Vol. 168. P. 61–70. doi: 10.1016/j.applanim.2015.04.006.
  17. Siniscalchi M., d’Ingeo S., Fornelli S., Quaranta A. Relationship between visuospatial attention and paw preference in dogs // Scientific Reports. 2016. Vol. 6. doi: 10.1038/srep31682.
  18. McGreevy P.D., Brueckner A., Thomson P.C., Branson N.J. Motor laterality in 4 breeds of dog // Journal of Veterinary Behavior. 2010. Vol. 5, iss. 6. P. 318–323. doi: 10.1016/j.jveb.2010.05.001.
  19. Marshall-Pescini S., Barnard S., Branson N.J., Valsecchib P. The effect of preferential paw usage on dogs (Canis familiaris) performance in a manipulative problem-solving task // Behavioural Processes. 2013. Vol. 100. P. 40–43. doi: 10.1016/j.beproc.2013.07.017.
  20. Rogers L.J. Relevance of brain and behavioural lateralization to animal welfare // Applied Animal Behaviour Science. 2010. Vol. 127, iss. 1–2. P. 1–11. doi: 10.1016/j.applanim.2010.06.008.
  21. Wells D.L., Hepper P.G., Milligan A.D.S., Barnard S. Comparing lateral bias in dogs and humans using the Kong ball test // Applied Animal Behaviour Science. 2016. Vol. 176. P. 70–76. doi: 10.1016/j.applanim.2016.01.010.
  22. Tomkins L.M., Thomson P.C., McGreevy P.D. Associations between motor, sensory and structural lateralisation and guide dog success // The Veterinary Journal. 2012. Vol. 192, iss. 3. P. 359–367. doi: 10.1016/j.tvjl.2011. 09.010.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 - The distribution of dogs depending on the preferred paw

Download (9KB)
3. Figure 2 - Diagram of sex ratio among groups with different motor lateralization

Download (18KB)
4. Figure 3 - Diagram of the distribution of motor lateralization of dogs by age groups

Download (19KB)
5. Figure 4 - Motor lateralization of "working" dogs depending on gender

Download (18KB)
6. Figure 5 - Motor lateralization of the group of "pensioners" depending on gender

Download (17KB)

Copyright (c) 2022 Kislaeva M.S., Blokhin I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies