Композиционный текстиль с электропроводящими и магнитными свойствами

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Электропроводящий композиционный текстиль и текстиль, сочетающий электропроводящие и магнитные свойства, получен на основе биосовместимых нетоксичных материалов: коммерческого нетканого текстиля, электропроводящего полипиррола и магнетита (Fe3O4). Композиционный текстиль сформирован из двуслойных волокон, где волокна исходного текстиля покрыты оболочкой полипиррола, а текстиль, сочетающий электропроводящие и магнитные свойства, имеет трехслойную структуру, где поверх оболочки полипиррола высажены частицы магнетита. Композиционный текстиль сохраняет структуру исходной ткани со свободным межволоконным пространством: удельная площадь поверхности материалов и их механические свойства близки по значениям. Исследован состав материалов их электропроводящие, магнитные и окислительно-восстановительные свойства. Изучено взаимодействие композиционного текстиля и текстиля, сочетающего электропроводящие и магнитные свойства с электромагнитным излучением в диапазоне частот 4–8 ГГц в сравнении с коммерческим радиопоглощающим материалом на основе карбонильного железа.

Full Text

Restricted Access

About the authors

И. Ю. Сапурина

Институт высокомолекулярных соединений Российской академии наук

Author for correspondence.
Email: sapurina@mail.ru
Russian Federation, Санкт-Петербург

М. А. Шишов

Институт высокомолекулярных соединений Российской академии наук

Email: sapurina@mail.ru
Russian Federation, Санкт-Петербург

А. Е. Щербаков

Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)

Email: sapurina@mail.ru
Russian Federation, Санкт-Петербург

Ю. М. Спивак

Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)

Email: sapurina@mail.ru
Russian Federation, Санкт-Петербург

А. А. Селютин

Санкт-Петербургский государственный университет

Email: sapurina@mail.ru
Russian Federation, Санкт-Петербург

References

  1. Chatterjee K., Tabor J. Ghosh T.K. // Electrically Conductive Coatings for Fiber-Based E-Textiles Fibers. 2019. V. 7. P. 51.
  2. Khundaqji H., Hing W., Furness J., Climstein M. // Scoping Review JMIR Mhealth Uhealth. 2020. V. 8(5). P. 18092.
  3. Coyle S., Diamond D. Encyclopedia of Materials: Science and Technology. Elsevier: N.-Y., 1–5. 2010.
  4. Mondal K. // Recent Advances in Soft E-Textiles Inventions. 2018. V. 3. P. 23.
  5. Singh K., Kumar J., Pandit P. // Recent Advancements in Wearable & Smart Textiles: An Overview, Materials Today: Proceedings. 2019. V. 16. P. 1518.
  6. Zahid M., Rathore H.A., Tayyab H., Rehan Z.A., Rashid I.A., Lodhi M., Zubair U., Shahid I. // Arabian Journal of Chemistry. 2022. V. 15. P. 103480.
  7. Wang Z., Wang W., Jiang Z., Yu D. // Applied Surface Science. 2017. V. 396. P. 208.
  8. Singha K., Kumar J., Pandit P. // Materials Today-Proc. 2019. V. 16. P. 1518.
  9. Mirabedini A., Lu Z., Mostafavian S. // J. Foroughi. Nanomaterials. 2021. V. 11. P. 3.
  10. Henn A.R., Cribb R.M. // Interference Technology Engineering Master (ITEM) Update. 1993. V. 15. P. 4.
  11. Ersoy M.S., Onder E. // Textile Research Journal. 2014. V. 84. P. 2103.
  12. Babaahmadi V., Montazer M., Gao W. // Carbon. 2017.
  13. Fajar M.N., Endarko E., Rubiyanto A., Nizam N.A., Malek N., Hadibarata T., Syafiddin A. // Biointerface A. Research in Applied Chemistry. 2020. V. 10. № 1. P. 4902.
  14. Stejskal J., Trchova M., Sapurina I. // J. Appl. Polym. Sci. 2005. V. 98. P. 2347.
  15. Skotheim T.A., Reynolds J.R. Handbook of Conducting Polymers. CRC Press, Boca Raton, 1320. 2007.
  16. Liu Y., Yin P., Chen J., Cui B., Zhang C., Wu F. // International Journal of Polymer Science. 2020. V. 16.
  17. Silva A.C., Cordoba T. // Front. Mater. 2019. V. 6. P. 98.
  18. Zare E.N., Makvandi P., Ashtari B., Rossi F., Motahari A., Perale G. // J. Med. Chem. 2016. V. 18.
  19. Sapurina I.Yu., Matrenichev V.V., Vlasova E.N., Shishov M.A., Ivan’kova Е.М., Dobrovolskaya I.P., Yudin V.E. Polymer Science, Ser B. 2020. V. 62. № 2. P. 116.
  20. Nekounam H., Gholizadeh S., Allahyari Z., Samadian H., Nazeri N., Ali Shokrgozar M. // Reza Faridi-Majidi. Materials Research Bulletin. 2021. V. 134. P. 111083.
  21. Lorca S., Santos F., Fernandez A.J. // Gadgets and Smart Textiles Polymers. 2020. V. 12. P. 2812.
  22. Sapurina I.Yu., Shishov M.A., Ivanova V.T. // Russ. Chem. Rev. 2020. V. 89. № 10. P. 1115.
  23. Conzuelo L.V., Arias-Pardilla J., Cauich-Rodriguez J.V., Smit M.A., Otero T.F. // Sensors. 2010. V. 10. P. 2638.
  24. She C., Li G., Zhang W., Xie G., Zhang Y., Li L., Cheng Y. // Sensors and Actuators A: Physical. 2021. V. 317. P. 112436.
  25. Li Y.-Q., Huang P., Zhu W.-B., Fu S.-Y., Hu N., Liao K. // Sci. Rep. 2017. V. 7. P. 45013.
  26. Harito C., Utari L., Putra B.R., Yuliarto B., Purwanto S., Zaidi S.Z.J., Bavykin D.V., Marken F., Walsh F.C. // Perspectives Journal of The Electrochemical Society. 2020. V. 167. P. 037566.
  27. Wang D., Zhou X., Song R., Wang Z., Fang C., Li N.,Huang Y. // International Journal of Biological Macromolecules. 2021. V. 181. P. 160.
  28. Yavuz O., Ram M.K., Aldissi M. // Nanotechnology. 2008. V. 9. P. 435.
  29. Liu Y., Yin P., Chen J., Cui B., Zhang C., Wu F. // International Journal of Polymer Science. 2020. V. 16.
  30. Shakir M.F., Rashid I.A., Tariq A., Nawab Y., Afzal A., Nabeel M., Hamid U. // Journal of Electronic Materials. 2020. V. 49(3). P. 1660.
  31. Chandrasekhar P., Naishadham K. // Synthetic Metals. 1999. V. 105. P. 115.
  32. N.E. Kazantseva. Sabu Tomas Polymer Composites Willey−VCH, Weinheim. P. 613. 2012.
  33. Babayan V., Kazantseva N.E., Sapurina I., Moučka R., Vilčakova J., Stejskal J. // Applied Surface Science. 2012. V. 258. P. 7707.
  34. Wu J., Zhou D., Too C.O., Wallace G.G. // Synthetic Metals. 2005. V. 155. № 3. P. 698.
  35. Kim H.K., Kim M.S., Chun S.Y., Park Y.H., Jeon B.S., Lee J.Y., Hong Y.K., Joo J., Kim S.H. // Mol. Cryst. Liq. Cryst. 2003. V. 405. P. 161.
  36. Radoičić M., Ćirić-Marjanović G., Miličević D., Suljovrujić E., Milošević M., Jakovljević J.K., Šaponjić Z. // Composite Interfaces. 2020.
  37. Geetha S., Kumar K., Meenakshi S., Vij ayan M.T., Trivedi D.C. // Сomposites science and technology. 2020. V. 70. № 6. P. 1017.
  38. Usman M., Byrne J.M., Chaudhary A., Orsetti S., Hanna K., Ruby C., Kappler A., Haderlein S.B. Chem. Rev. 2018. V. 118. P. 3251.
  39. Tokmeilova S., Maraeva E.V. // Overview of sorption analysis capabilities for meso- and microporouszeolites nanomaterials. Chimica Techno Acta. 2021. V. 8. № 3. P. 20218302.
  40. Gahlout P., Choudhary V. // Composites part b-engineering. 2019. V. 175. P. 107093.
  41. Blinova N., Sapurina I., Klimovič J., Stejskal J. // Polymer Degradation and Stability. 2005. V. 88. P. 428.
  42. Pang A.L., Arsad A., Ahmadipour M. Polym. Adv. Technol. 2020. P. 1.
  43. Niculescu A.-G., Chircov C., Grumezescu A.M. // Methods. 2022. V. 199. P. 1046.
  44. Svobodova H., Kosna´ D., Tanila H., Wagner A., Trnka M., Vitovicˇ P., Hlinkova J., Vavrinsky E., Ehrlich H., Pola´k S., Kopani M. // Biometals. 2020. V. 33. P. 1.
  45. Reichel V., Kovacs A., Kumari M. Sci. Rep. 2017. V. 7. P. 45484.
  46. Moucka R., Kazantseva N., Sapurina I. // J. Mater Sci. Electronic materials. 2017.
  47. Shishov M.A., Sapurina I.Yu., Smirnova N.V., Yudin V.E. Biointerface Research in Applied Chemistry. 2023. V. 13. № 1. P. 96.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (64KB)
3. Fig. 1. Scheme for the production of T-PPi and T-PPi-Fe3O4: a – saturation of textiles with an oxidizer, b – drying of textiles, c – exposure in pyrrole vapor, d – immersion in an alkali solution. Color drawings can be viewed in the electronic version

Download (172KB)
4. Fig. 2. Photo of textile samples: a – source textile T, b – textile T-PP, c – textile with magnetite applied T-PP-Fe3O4

Download (250KB)
5. Fig. 3. Images of samples obtained by scanning electron microscopy: a, b – the original textile T; c, d – textiles after modification with polypyrrol T-PPi; e, f – textiles after planting magnetite T-PPi-Fe3O4 on the surface of the polypyrrol

Download (379KB)
6. Fig. 4. Data of X-ray diffraction analysis of composite textiles T-PPi-Fe3O4 in comparison with a reference sample of magnetite

Download (153KB)
7. Fig. 5. Energy dispersion analysis. The elemental composition of T-PPi-Fe3O4

Download (73KB)
8. Fig. 6. Element maps of the original textiles

Download (290KB)
9. Fig. 7. Element maps of the T-PPi-Fe3O4 material

Download (368KB)
10. Fig. 8. The dependence of magnetization on the magnetic field strength (a) and the central part of the dependence for the T-PPi-Fe3O4 sample (b)

Download (101KB)
11. Fig. 9. Volt-ampere characteristics of T-PPi (a) and T-PPi-Fe3O4 (b) in the dry state (1) and in saline solution (0.9 wt. % NaCl) (2)

Download (167KB)
12. Fig. 10. Time dependence of the current when T-PPi (a) and T-PPi-Fe3O4 (b) alternating voltage is applied to the samples in the range ± 1.0 V with a change of polarity every 60 seconds: a – in the dry state, b – in solution

Download (165KB)
13. Fig. 11. Frequency dependence of the parameters ST (a, c) and SR (b, d) for the range 3.9–5.65 (a, b) and 5.65–8 GHz (c, d). Sample thickness 2 (1, 1’), 4 (2, 2’) and 6 mm (3, 3’). Solid lines – T-PPi, dashed lines – T-PPi-Fe3O4

Download (300KB)
14. Fig. 12. The partial dependence of paraglyprofessionals was the same as the Sample t-STIs (1-3) and T-STIs (1’-3’), compared to the parameter p-Apostille–L (4, 4’) in the range of parts 3.9–5.65 (A) and 5.65-8 GGC (B). Tolshtina Obraztsov 2 (1, 1’), 4 (2, 2’, 4) and 6 mm (3, 3', 4')

Download (124KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».