Самовосстанавливающиеся полиуретаны на основе природного сырья

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

На основе фурфурилглицидилового эфира – продукта, получаемого из фурфурола, синтезированы диольные удлинители цепи. С использованием этих удлинителей и бисмалеимидного отвердителя получены полиуретаны с эффектом термического самовосстановления посредством обратимой реакции Дильса–Альдера. Строение синтезированных полимеров доказано методом ИК-спектроскопии. Также определены термические и физико-механические свойства материалов. Методом дифференциальной сканирующей калориметрии показан циклический характер протекания прямой и обратной реакции Дильса–Альдера. С помощью метода сканирующей электронной микроскопии проведена визуальная оценка способности материала к самовосстановлению. Количественная оценка (эффективность самовосстановления модуля Юнга и предела прочности) проведена при помощи динамометрического анализа исходных и восстановленных образцов полимеров. Показано влияние содержания динамических связей на свойства полиуретанов, а также эффективность самозалечивания.

Texto integral

Acesso é fechado

Sobre autores

Е. Платонова

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук; Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук

Autor responsável pela correspondência
Email: e-o-platonova@yandex.ru
Rússia, 119991 Москва, ул. Косыгина, 4; 119334 Москва, ул. Вавилова, 28, стр. 1

П. Пономарева

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук

Email: e-o-platonova@yandex.ru
Rússia, 119991 Москва, ул. Косыгина, 4

И. Третьяков

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук

Email: e-o-platonova@yandex.ru
Rússia, 119991 Москва, ул. Косыгина, 4

Е. Афанасьев

Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук

Email: e-o-platonova@yandex.ru
Rússia, 119334 Москва, ул. Вавилова, 28, стр. 1

С. Фролов

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук

Email: e-o-platonova@yandex.ru
Rússia, 119991 Москва, ул. Косыгина, 4

Я. Межуев

Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук; Российский химико-технологический университет им. Д.И. Менделеева

Email: e-o-platonova@yandex.ru
Rússia, 119334 Москва, ул. Вавилова, 28, стр. 1; 125047 Москва, Миусская пл., 9

Bibliografia

  1. Research P. Polyurethane Market (By Product: Rigid Foam, Flexible Foam, Coatings, Adhesives & Sealants, Elastomers, Others; By Raw Material: Polyol, MDI, TDI, Others; By Application: Furniture & Interiors, Construction, Electronics & Appliances, Automotive, Footwear, Packaging, Others) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023-2032 [Электронный ресурс]. 2024. - URL: https://www.precedenceresearch.com/polyurethane-market (Дата обращения 03.05.2024).
  2. Weng F., Liu X., Koranteng E., Ma N., Wu Z., Wu Q. // Polym. Compos. 2019. V. 40. № 12. P. 4694.
  3. Wang S., Liu Z., Zhang L., Guo Y., Song J., Lou J., Guan Q., He C., You Z. // Mater. Chem. Frontiers. 2019. V. 3. № 9. P. 1833.
  4. Fan W., Zhang Y., Li W., Wang W., Zhao X., Song L. // Chem. Eng. J. 2019. V. 368. P. 1033.
  5. Mirmohseni A., Akbari M., Najjar R., Hosseini M. // J. Appl. Polym. Sci. 2019. V. 136. № 8. P. 47082.
  6. Deng Y., Dewil R., Appels L., Ansart R., Baeyens J., Kang Q. // J. Environment. Management. 2021. V. 278. P. 111527.
  7. Gama N., Godinho B., Marques G., Silva R., Barros-Timmons A., Ferreira A. // Polymer. 2021. V. 219. P. 123561.
  8. Akindoyo J.O., Beg M.D.H., Ghazali S., Islam M.R., Jeyaratnam N., Yuvaraj A.R. // RSC Adv. 2016 V. 6. № 115. P. 114453.
  9. Zhang Y., Broekhuis A.A., Picchioni F. // Macromolecules. 2009. V. 42. № 6. P. 1906.
  10. Liu J., Ma X., Tong Y., Lang M. // Appl. Surfa. Sci. 2018. V. 455. P. 318.
  11. Chang K., Jia H., Gu S.-Y. // Eur. Polym. J. 2019. V. 112. P. 822.
  12. Liang Z., Huang D., Zhao L., Nie Y., Zhou Z., Hao T., Li S. // J. Inorgan. Organomet. Polymers Mater. 2021. V. 31. № 2. P. 683.
  13. Bhattacharya S., Phatake R.S., Nabha Barnea S., Zerby N., Zhu J.-J., Shikler R., Lemcoff N.G., Jelinek R. // ACS Nano. 2019. V. 13. № 2. P. 1433.
  14. Coope T., Turkenburg D., Fischer H., Luterbacher R., Bracht H., Bond I. // Smart Mater. Struct. 2016. V. 25. P. 084010.
  15. Platonova E.O., Vlasov E., Pavlov A.A., Kireynov A., Nelyub V.A., Polezhaev A.V. // J. Appl. Polym. Sci. 2019. V. 136. № 33. P. 47869.
  16. Shahidzadeh M., Khansari Varkaneh Z., Ramezanzadeh B., Zamani Pedram M., Yarmohammadi M. // Progr. Org. Coatings. 2020. V. 140. P. 105503.
  17. Wei Y., Du X., Ma X., Zhao K., Zhang S., Bai Y. // Polym. Bull. 2017. V. 74. № 9. P. 3907.
  18. Adzima B.J., Aguirre H.A., Kloxin C.J., Scott T.F., Bowman C.N. // Macromolecules. 2008. V. 41. № 23. P. 9112.
  19. Kavitha A.A., Singha N.K. // ACS Appl. Mater. Interfaces. 2009. V. 1. № 7. P. 1427.
  20. Kloxin C.J., Scott T.F., Adzima B.J., Bowman C.N. // Macromolecules. 2010. V. 43. № 6. P. 2643.
  21. Marref M., Mignard N., Jegat C., Taha M., Belbachir M., Meghabar R. // Polym. Int. 2013. V. 62. № 1. P. 87-98.
  22. Scheltjens G., Diaz M.M., Brancart J., Van Assche G., Van Mele B. // React. Funct. Polymers. 2013. V. 73. № 2. P. 413.
  23. Gandini A., Carvalho A.J.F., Trovatti E., Kramer R.K., Lacerda T. M. // Eur. J. Lipid Sci. Technol. 2018. V. 120. № 1. P. 1700091.
  24. Karami Z., Zohuriaan-Mehr M., Kabiri K., Ghasemi Rad N. // Polymers from Renewable Resources. 2019. V. 10. № 1–3. P. 27.
  25. Liu Y.-L., Hsieh C.-Y. // J. Polym. Sci., Polym. Chem. 2006. V. 44. № 2. P. 905.
  26. Strachota B., Morand A., Dybal J., Matějka L. // Polymers. 2019. V. 11. № 6. P. 930.
  27. Willocq B., Odent J., Dubois P., Raquez J.-M. // RSC Adv. 2020. V. 10. № 23. P. 13766.
  28. Menon A.V., Madras G., Bose S. // Polym. Chem. 2019. V. 10. № 32. P. 4370.
  29. Gaina C., Ursache O., Gaina V., Varganici C. D. // eXPRESS Polym. Lett. 2013. V. 7. P. 636.
  30. Goussé C., Gandini A., Hodge P. // Macromolecules. 1998. V. 31. № 2. P. 314.
  31. Petrova T.V., Solodilov V.I., Kabantseva V.E., Karelina N.V., Polezhaev A.V. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 683. P. 012070.
  32. Platonova E., Chechenov I., Pavlov A., Solodilov V., Afanasyev E., Shapagin A., Polezhaev // Polymers. 2021. V. 13. № 12. P. 1935.
  33. Froidevaux V., Borne M., Laborbe E., Auvergne R., Gandini A., Boutevin B. // RSC Adv. 2015.V. 5. № 47. P. 37742.
  34. Cuvellier A., Verhelle R., Brancart J., Vanderborght B., Van Assche G., Rahier H. // Polym. Chem. 2019. V. 10. № 4. P. 473.
  35. Faucher J.A. // J. Polym. Sci., Polym. Lett. 1965. V. 3. № 2. P. 143.
  36. Бакирова И.Н., Романов Д.А., Губанов Э.Ф., Зенитова Л.А. // Высокомолек. соед. Б. 1998. Т. 40. № 10. С. 1666.
  37. Wang W., Ping P., Chen X., Jing X. // Eur. Polym. J. 2006. V. 42. № 6. P. 1240.
  38. Teitelbaum B.Y., Yagfarova T.A., Aleyev K.M., Khasanov M.K., Gafurov F.S. // J. Тhermal Аnalysis. 1984. V. 29. № 2. P. 227.
  39. Yu S., Zhang R., Wu Q., Chen T., Sun P. // Adv. Mater. 2013. V. 25. № 35. P. 4912.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Formula 1

Baixar (50KB)
3. Formula 2

Baixar (45KB)
4. Formula 3

Baixar (94KB)
5. Fig. 1. IR-ATR spectra of trifurandiol (1), polyurethanes PU-TF0 (2), PU-TF1 (3), PU-TF2 (4) and PU-TF3 (5). Colored figures can be viewed in the electronic version.

Baixar (256KB)
6. Fig. 2. TGA (a) and DTG (b) curves of polyurethanes PU-TF1 (1), PU-TF2 (2) and PU-TF3 (3).

Baixar (182KB)
7. Fig. 3. DSC curves of polymers PU-TF1 (1), PU-TF2 (2) and PU-TF3 (3): solid line – first heating, dashed line – second heating, dotted line – cooling.

Baixar (142KB)
8. Fig. 4. TMA curves of polymers PU-TF1 (1), PU-TF2 (2) and PU-TF3 (3).

Baixar (96KB)
9. Fig. 5. Swelling curves of the original polymers PU-TF1 (1), PU-TF2 (2) and PU-TF3 (3) (a), as well as twice processed polymers PU-TF1 (b), PU-TF2 (c) and PU-TF3 (d); b–d: 1 – 0 cycle, 2 – 1 cycle, 3 – 2 cycle.

Baixar (346KB)
10. Fig. 6. Typical loading diagrams of PU-TF1 (1), PU-TF2 (2) and PU-TF3 (3).

Baixar (88KB)
11. Fig. 7. Change in the tensile strength (a), elastic modulus (b) of PU-TF1 (1), PU-TF2 (2), PU-TF3 (3) during secondary processing, and the relative elongation of PU-TF1 (1), PU-TF2 (2) and PU-TF3 (3) samples during cyclic processing (c).

Baixar (281KB)
12. Fig. 8. SEM images of a PU-TF3 film sample before (a) and after (b) thermal healing.

Baixar (290KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».