Composites Based on Biodegradable Polymers and Layered Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of mechanical and electrical tests of composite materials based on biodegradable polymers (polyvinyl alcohol, polyacrylamide, starch) and synthetic layered double hydroxides (Ni–Al, Zn–Al) obtained by two-stage (chemical) and one-stage (plasma chemical) methods. The one-stage method for producing composites involves the formation of filler structures during the burning of low-temperature plasma in the bulk of an aqueous polymer solution. Electrode materials were used as precursors. Regardless of the production method, 2D hexagonal structures are formed and embedded in the polymer matrix. This is evidenced by IR spectroscopy data showing shifts in the main characteristic bands and the appearance of new ones. It has been established that layered fillers can be both plasticizers and reinforcing agents. The influence of the viscosity of the polymer matrix on the mechanical characteristics of the composites has been revealed. The introduction of fillers changes the surface roughness, leading to an increase in hydrophobicity of the composites. It has been established that the current–voltage curves of the composites are nonlinear, so that such composites can be considered as flexible analogues of nonlinear electronic components.

About the authors

A. V. Khlyustova

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

A. V. Agafonov

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

V. A. Titov

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

A. V. Evdokimova

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

V. D. Shibaeva

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

A. S. Kraev

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

N. A. Sirotkin

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: kav@isc-ras.ru
153045, Ivanovo, Russia

References

  1. Luo X., Zhu L., Wang Y.C., Li J., Nie J., Wang Z.L. // Adv. Funct. Mater. 2021. V. 31. Art. 2104928.
  2. Гасанли Ш.М., Самедова У.Ф. // Журн. техн. физики. 2013. Т. 83. № 10. С. 132.
  3. Степашкина А.С., Алешин А.Н., Рымкевич П.П. // Физика твердого тела. 2015. Т. 57. № 14. С. 814.
  4. Shin S.H., Kwon Y.H., Lee M.H., Jung J.Y., Seol J.H., Nah J. // Nanoscale. 2016. V. 8. № 3. P. 1314.
  5. Guan N., Dai X., Babichev A.V., Julien F.H., Tchernycheva M. // Chem. Sci. 2017. V. 8. № 12. P. 7904.
  6. Кахраманов Н.Т.О., Косева Н.С. // Перспективные материалы. 2019. Т. 3. С. 47.
  7. Zhou Y., Liu F., Wang H. // Polym. Compos. 2017. V. 38. № 4. P. 803.
  8. Botan R., Pinheiro I.F., Ferreira F.V., Lona L.M.F. // Mater. Res. Express, 2018. V. 5. P. 6500.
  9. Zhang Z., Qin J., Zhang W., Pan Y.-T., Wang D.-Y., Yang R. // Chem. Eng. J. 2020. V. 381. P. 122777.
  10. Quispe-Dominguez R., Naseem S., Leuteritz A., Kuehnert I. // RSC Adv. 2019. V. 9. P. 658.
  11. Singh M., Somvanshi D., Singh R.K., Mahanta A.K., Maiti P., Misra N., Paik P. // J. Appl. Polym. Sci. 2020. V. 137. № 27. P. 48894.
  12. Ruiz C.V., López-González M., Giraldo O. // Polym. Test. 2021. V. 94. P. 107057.
  13. Dinari M., Nabiyan A. // Polym. Compos. 2017. V. 38. P. E128.
  14. Du M., Ye W., Lv W., Fu H., Zheng Q. // Eur. Polym. J. 2014. V. 61. P. 300.
  15. Mochane M.J., Magagula S.I., Sefadi J.S., Sadiku E.R., Mokhena T.C. // Crystals. 2020. V. 10. № 7. P. 612.
  16. Ramaraj B., Nayak S.K., Yoon K.R. // J. Appl. Polym. Sci. 2010. V. 116. P. 1671.
  17. Zhou K., Gui Z., Hu Y. // Polym. Adv. Technol. 2017. V. 28. № 3. P. 386.
  18. Hu Z., Chen G. // Adv. Mater. 2014. V. 26. № 34. P. 5950.
  19. Ma Z., Meng D., Zhang Z., Wang Y. // Thermochim. Acta. 2022. V. 707. Art. 179118.
  20. Zhao C.X., Liu Y., Wang D.Y., Wang D.L., Wang Y.Z. // Polym. Degrad. Stab. 2008. V. 93. P. 1323.
  21. De Carvalho A.J.F., Curvelo A.A.S., Agnelli J.A.M. // Carbohydr. Polym. 2001. V. 45. № 2. P. 189.
  22. Sierakowski M.R., Souza G.P., Wypych F. // Carbohydr. Polym. 2003. V. 52. P. 101.
  23. Yang F., Kadhim M.S., Babiker M., Elshekh H., Hou W., Huang G., Zhang Y., Zhao Y., Sun B. // Mater. Today Commun. 2019. V. 20. Art. 100573.
  24. Ali H.E., Khairy Y., Algarni H., Elsaeedy H.I., Alshehri A.M., Yahia I.S. // J. Mater. Sci. Mater. Electron. 2018. V. 29. Art. 20424.
  25. Elsaeedy H.I., Ali H.E., Algarni H., Yahia I. S. // Appl. Phys. A. 2019. V. 125. P. 79.
  26. Bidadi H., Olad A., Parhizkar M., Aref S.M., Ghafouri M. // Vacuum. 2013. V. 87. P. 50.
  27. Das A.K., Dutta B., Sinha S., Mukherjee A., Basu S., Meikap A.K. // AIP Conf. Proceed. 2016. V. 1731. Art. 110036.
  28. Khlyustova A., Sirotkin N., Kraev A., Agafonov A., Titov V. // Polym. Compos. 2022. V. 43. № 6. P. 4029.
  29. Ma X., Yu J., Wang N. // Compos. Sci. Technol. 2008. V. 68. № 1. P. 268.
  30. Wang S., Zhang P., Li Y., Li J., Li X., Yang J., Ji M., Li F., Zhang C. // Carbohydr. Polym. 2023. V. 307. Art. 120627.
  31. Blyakhman F.A., Safronov A.P., Zubarev A.Y., Shklyar T.F., Makeyev O.G., Makarova E.B., Melekhin V.V., Laranaga A., Kurlyandskaya G.V. // Res. Phys. 2017. V. 7. P. 3624.
  32. Ohm Y., Pan C., Ford M.J., Huang X., Liao J., Majidi C. // Nature Electronics. 2021. V. 4. № 3. P. 185.
  33. Khlyustova A., Sirotkin N., Kraev A., Agafonov A., Titov V. // J. Appl. Polym. Sci. 2021. V. 138. № 40. Art. 51174.
  34. Agafonov A.V., Sirotkin N.A., Titov V.A., Khlyustova A.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 253.
  35. Agafonov A.V., Sirotkin N.A., Titov V.A., Khlyustova A.V. // Inorg. Mater. 2022. V. 58. № 11. P. 1137.
  36. Khlyustova A., Sirotkin N., Titov V., Agafonov A. // J. Alloys Compnds. 2021. V. 858. Art. 157664.
  37. Agafonov A.V., Shibaeva V.D., Kraev A.S., Sirotkin N.A., Titov V.A., Khlyustova A.V. // Russ. J. Inorg. Chem. 2023. V. 68. № 1. P. 1.
  38. Cavani F., Trifiro F., Vaccari A. // Catal. Today. 1991. V. 11. № 2. P. 173.
  39. Leroux F., Besse J.P. // Chem. Mater. 2001. V. 13. № 10. P. 3507.
  40. Jiang S.D., Tang G., Bai Z.M., Wang Y.Y., Hu Y., Song L. // RSC Adv. 2014. V. 4. № 7. P. 3253.
  41. Козлов Г.В. // Успехи физ. наук. 2015. Т. 185. № 1. С. 35.
  42. Яновский Ю.Г., Козлов Г.В., Карнет Ю.Н. // Физ. мезомеханика. 2012. Т. 15. № 6. С. 21.
  43. Валиев Х.С., Квасков В.Б. Нелинейные металлооксидные полупроводники. М.: Энергоатомиздат, 1983.
  44. Wang X., Huang L., Zhang C., Deng Y., Xie P., Liu L., Cheng J. // Carbohydr. Polym. 2020. V. 240. Art. 116292.
  45. Gürler N., Torğut G. // Polym. Compos. 2021. V. 42. 1. P. 173.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (338KB)
3.

Download (2MB)
4.

Download (674KB)
5.

Download (283KB)
6.

Download (261KB)

Copyright (c) 2023 А.В. Агафонов, В.А. Титов, А.В. Евдокимова, В.Д. Шибаева, А.С. Краев, Н.А. Сироткин, А.В. Хлюстова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies