The Application of Regression Models to Enhance Gas Turbine Engine Fault Tolerance

Cover Page

Cite item

Full Text

Abstract

Introduction. Improving the fault tolerance of automatic control systems (ACS) for gas turbine engines (GTE) relies on structural redundancy, achieved by duplicating measurement channels for key engine parameters. However, determining which channel provides dependable information poses a challenge. A solution proposed involves employing an integrated mathematical model as an "arbitrator". This article focuses on presenting regression models for the main parameters of a gas turbine engine. The study aims at developing a GTE parameter model based on regression models, assess the models' adequacy on both training and predictive datasets, and identify the optimal mathematical model. The article addresses the mathematical model structure of GTE main parameters, presents an experiment setup methodology, examines linear and polynomial regression models, calculates model adequacy, and selects the best models. Findings and conclusion. Regression models using machine learning were built to evaluate the GTE main parameters. During model analysis, various mathematical combinations of the main parameters were considered alongside the main parameters themselves. The research identified significant model regressors and optimal models based on the learning algorithm. A comprehensive analysis of model adequacy revealed satisfactory results for the parameters  (P2; hnc; αвна; n2; n1), while the search for alternative model types for the parameters (T4; αди; αруд)  is proposed.

Full Text

Restricted Access

About the authors

Sergey V. Ostapenko

JSC «ODK-STAR»

Author for correspondence.
Email: nataly-anv@mail.ru
SPIN-code: 2027-5034

Chief Design Engineer

Russian Federation, 140A, Kuibyshev str., Perm, 614990

Natalia V. Andrievskaya

Perm National Research Polytechnic University

Email: nataly-anv@mail.ru

Candidate of Engineering Sciences, Associate Professor at the Department of Microprocessor Units of Automation

Russian Federation, 7, Professora Pozdeeva str., Perm,614013

Aleksandr A. Yuzhakov

Perm National Research Polytechnic University

Email: nataly-anv@mail.ru
ORCID iD: 0000-0003-1865-2448
SPIN-code: 4820-8360

Doctor of Engineering Sciences, Professor, Head of the Department of Automation and Telemechanics

Russian Federation, 7, Professora Pozdeeva str., Perm,614013

References

  1. Inozemcev AA, Sandrackij VL. Gas turbine engines. Perm, Publishing house OJSC "Aviadvigatel"; 2006. 1204 p. (In Russ.).
  2. Vasilyev SN. Problems of control of complex dynamic objects of aviation and space technology. Moscow, Mashinostroenie; 2015. 519 p. (In Russ.).
  3. Vasilyev SN. Intelligent control and monitoring systems for gas turbine engines. Moscow, Mashinostroenie; 2008. 549 p. (In Russ.).
  4. Gurevich OS, Gulienko AI, Smetanin SA. Analysis of modern automated control systems for turbofan engines and directions of their development. Automatic control systems for aviation power plants: Collection of scientific papers. Moscow: Central Institute of Aviation Motors; 2020:7–12. (In Russ.).
  5. Ostapenko SV, Juzhakov AA. Improving the fault tolerance of ACS using artificial intelligence algorithms. Proceedings of the II international conference «Math modeling». Moscow: Publishing house "Pero"; 2021:68–70. (In Russ.).
  6. Golberg FD, Gurevich OS, Petukhov AA. Mathematical model of an engine in an automated control systems of gas turbine engine to improve reliability and control quality. Trudy MAI. 2012;58:16-24. (In Russ.).
  7. Ostapenko SV, Andrievskaia NV, Iuzhakov AA. Improving the fault tolerance of gas turbine engines through the use of an embedded experimental model. Scientific and Technical Volga region Bulletin. 2023;(11):372-378. (In Russ.).
  8. Golberg FD, Petuhov AA. Identification of the on-board mathematical model of the engine. Automatic control systems for aviation power plants: Collection of scientific papers. Moscow: Central Institute of Aviation Motors; 2020:61–65. (In Russ.).
  9. Drejper N, Smit G. Applied Regression Analysis. Moscow, Dialektika; 2007. 911 p. (In Russ.)
  10. Rashka S, Mirdzhalili V. Python and machine learning. Kiev, Dialektika; 2020. 848 p. (In Russ.)
  11. Watt J, Borhani R, Katsaggelos A. Machine Learning Refined: Foundations, Algorithms, and Applications. Saint-Petersburg, BHV-Peterburg; 2022. 640 p. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heatmap of dependencies

Download (119KB)
3. Fig. 2. Modeling results of the original parameter P₂, using the Random Forest Regressor model,  and absolute error MAE

Download (163KB)
4. Fig. 3. Modeling results of the original parameter T₄, using the SGD Regression_Baseline model, and absolute error MAE

Download (182KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).