Defects of reinforced concrete chimneys in modern operating conditions

Abstract

Introduction. The paper is devoted to the analysis of the occurrence of the defects on reinforced concrete chimney shafts under current operating conditions. The history of the construction of reinforced concrete chimneys was studied. This paper uses generally accepted survey and analytical research methods. Analytical work was carried out on current methods for eliminating defects in reinforced concrete shafts and a conclusion was made on the ineffectiveness of these solutions.Materials and methods. Inspections of reinforced concrete chimneys built in 1950–1980 were carried out, including the study of design features and construction methods, analysis of operating conditions, visual inspection, as well as inspection of building structures using destructive and non-destructive testing methods. An analysis was carried out to identify the relationships between the design solutions of the reinforced concrete shaft and the current loads from the connected devices to the gas outlet shaft, affecting the internal and, as a consequence, the outer shell of reinforced concrete pipes, in connection with the transition to another type of fuel, which does not correspond to the chimney according to the project. An analysis of the occurrence of defects and modern methods for eliminating them were carried out.Results. It was established during the survey that with the occurrence of defects formed from the transition from solid to gaseous fuel, the load-bearing capacity of reinforced concrete chimneys is sharply reduced, which leads to the failure of structures. Modern methods of defect elimination cause greater destruction in terms of area, as they temporarily eliminate only the consequences, but do not eliminate the causes of defects in reinforced concrete chimneys. In this connection, there is a danger to the operation of technical devices connected to the chimneys, to the buildings in close proximity to the structures, as well as a danger to the life of the operating personnel.Conclusions. The results obtained allow us to reasonably speak about the ineffectiveness of modern methods of eliminating defects, which in turn has only a short-term effect and contributes to great destruction, leading structures to an emergency condition.

About the authors

V. A. Ermakov

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: Ermakov@mgsu.ru

S. A. Nikolaev

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: NikolaevS.A@yandex.ru

References

  1. Карабасов Ю.С., Черноусов П.И., Коротченко Н.А., Голубев О.В. Металлургия и время : энциклопедия. В 6 т. 2011–2014.
  2. Степанов С.Г., Исламов С.Р. Газификация угля: возврат в прошлое или шаг в будущее? // Новости теплоснабжения. 2007. № 1 (77).
  3. Бельский В.И., Сергеев Б.В. Промышленные печи и трубы. Издание второе. М. : Стройиздат, 1974. 301 с.
  4. Зулкарнаев Г.С., Мелентьев А.С., Гафиятуллина Н.М. Конструктивные решения железобетонных промышленных газоотводящих труб // Молодой ученый. 2016. № 10 (114). С. 208–213. EDN WAOAZX.
  5. Асташкин В.М., Жолудов В.С., Корсунский А.З., Малютин Е.В., Спорыхин Б.Б. Дымовые трубы: традиции и инновации. Глава 1. Классификация и основные элементы промышленных дымовых труб. 2011.
  6. Асташкин В.М., Жолудов В.С., Корсунский А.З., Малютин Е.В., Спорыхин Б.Б. Дымовые трубы: традиции и инновации. Глава 2. Основы проектирования дымовых труб. 2011.
  7. Коткова О.Н. Мониторинг безопасности дымовой трубы предприятия нефтехимии // Вестник СГАСУ. Градостроительство и архитектура. 2013. № 3 (11). С. 81–84. doi: 10.17673/Vestnik.2013.03.16. EDN PYDCSJ.
  8. Subbotin A., Razov I., Popova E., Dolgih A. Impact of the ash deposits from coal combustion on thermal conditions of the furnace pipes // MATEC Web of Conferences. 2017. Vol. 110. P. 01068. doi: 10.1051/matecconf/201711001068
  9. Fakourian S., Roberts M., Dai J. Numerical prediction of ash deposit growth burning pure coal and its blends with woody biomass in a 1.5 MWTH combustor // Applied Thermal Engineering. 2023. Vol. 224. P. 120110. doi: 10.1016/j.applthermaleng.2023.120110
  10. Бабушкин Р.А., Гмызов Д.С., Иванов Ю.П. Тепловизионная диагностика дымовых труб // Инновационная наука. 2015. № 9 (9). С. 52–57. EDN UINXKZ.
  11. Лазутин Н.В., Матвеев Ю.В. Тепловизионное обследование дымовой трубы — эффективный способ выявления скрытых дефектов в процессе проведения экспертизы промышленной безопасности ее строительных конструкций // Аспирант и соискатель. 2015. № 6 (90). С. 87–89.
  12. Kirchhof L.D., Antocheves de Lima R.C., da Silva Santos Neto A.B., Quispe A.C., da Silva Filho L.C.P. Effect of moisture content on the behavior of high strength concrete at high temperatures // Matéria (Rio de Janeiro). 2020. Vol. 25. Issue 1. doi: 10.1590/s1517-707620200001.0898
  13. Ельшин А.М., Ижорин М.Н., Жолудов В.С., Овчаренко Е.Г. Дымовые трубы: теория и практика конструирования и сооружения. М. : Стройиздат, 2001. 295 с.
  14. Mainier F.B., Fernandes Almeida P.C., Nani B., Fernandes L.H., Reis M.F. Corrosion caused by sulfur dioxide in reinforced concrete // Open Journal of Civil Engineering. 2015. Vol. 5. Issue 4. Pp. 379–389. doi: 10.4236/ojce.2015.54038
  15. Jaśniok T., Jaśniok M. Influence of rapid changes of moisture content in concrete and temperature on corrosion rate of reinforcing steel // Procedia Engineering. 2015. Vol. 108. Pp. 316–323. doi: 10.1016/j.proeng.2015.06.153
  16. Chernin L. Effect of corrosion on the concrete-reinforcement interaction in reinforced concrete beams. Haifa, 2008. 184 p.
  17. Фадеева Г.Д., Гарькин И.Н., Забиров А.И. Промышленные железобетонные дымовые трубы: методика проведения экспертизы // Современная техника и технологии. 2014. № 8 (36). С. 47–50. EDN SNLDYZ.
  18. Дудочкин И.Б., Овчинников Я.В., Кухта М.В., Шишкина Е.А., Зарипова Г.У. Технологии строительства дымовых промышленных труб // Технические науки — от теории к практике. 2015. № 45. С. 93–99. EDN TRRTCP.
  19. Slavcheva G., Bekker A.T. Temperature and humidity dependence on strength of high performance concrete // Solid State Phenomena. 2017. Vol. 265. Pp. 524–528. doi: 10.4028/ href='www.scientific.net/ssp.265.524' target='_blank'>www.scientific.net/ssp.265.524
  20. Voland K., Weise F., Meng B. Alkali-silica reaction in concrete pavements // Key Engineering Materials. 2016. Vol. 711. Pp. 714–721. doi: 10.4028/ href='www.scientific.net/kem.711.714' target='_blank'>www.scientific.net/kem.711.714

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).