Stress-strain state of the Yumaguzinsky hydroelectric dam
- Authors: Burenkov P.M.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Issue: Vol 13, No 2 (2023)
- Pages: 51-73
- Section: Building structures. Soils and foundations. Technology and organization of construction. Designing of buildings and constructions. Engineering survey and inspection of buildings
- URL: https://journals.rcsi.science/2305-5502/article/view/252511
- DOI: https://doi.org/10.22227/2305-5502.2023.2.4
- ID: 252511
Cite item
Full Text
Abstract
Introduction. The stone-and-earth dam of the Yumaguzinskiy hydroelectric complex on the Belaya river is constructed in complicated geological conditions on heterogeneous foundation. The results of computational research of stress-strain state (SSS) of the dam, carried out for the variant of an earth dam with the central core are presented. When calculating the deflected mode of dams, the real structure of ground characterized by its relation of elastic and plastic bonds should be taken into account. The change of this structure takes place along with the change in stresses and is reflected in the values of coefficient of relative strength and coefficients of reliability. The values of the safety coefficients can be used to judge the strength state of the dam.Materials and methods. The stress-strain state of the dam was determined on the basis of the energy model of the developed by L.N. Rasskazov. The area of the selected fragment of the dam has been divided into single-type elements; a triangular grid of the finite element method has been adopted, by means of which the structure of the soil dam and the foundation have been described.Results. Numerical calculations have shown that when water level in the reservoir rises to the level of the forced retaining level the character of stress distribution σxx changes. At the base of uppermost buttress prism at the boundary with the core there appears an area with small positive values, the largest of which is obtained in the transition zone. The entire hydrostatic load is transferred to the pressure face of the core and, consequently, the entire work of external forces is transferred to the internal deformation energy of this element, causing a stress concentration in it. The transition zone material is forced to follow the deformations of the core, resulting in the development of tensile stresses in the core. Therefore, increasing the stiffness of the core results in less deformation of the core and correspondingly less tensile stress in the transition zone. The nature of stress distribution σyy is symmetrical.Conclusions. Increasing the rigidity of the core entails elimination of the arch effect, which is particularly noticeable at lower reservoir levels. For this reason the use of skeleton material in the core of the dam is desirable.
About the authors
Pavel M. Burenkov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: burenkovpm@gmail.com
ORCID iD: 0000-0002-3452-8909
References
- Юлаев К.Г. Юмагузинская ГЭС // Башкирская энциклопедия. Т. 7. Уфа : ГАУН «Башкирская
- энциклопедия», 2019. 663 с.
- Баранов А.Е. Из опыта проектирования и строительства Юмагузинского гидроузла на р. Белой // Вестник МГСУ. 2006. № 2. С. 112–122.
- Потапова Л.Б., Ярцев В.П. Механика материалов при сложном напряженном состоянии. Как прогнозируют предельные напряжения? М. : Машиностроение-1, 2005. 244 с.
- Гольдин А.Л., Рассказов Л.Н. Проектирование грунтовых плотин. 2-е изд., перераб. и доп. М. : Изд-во АСВ, 2001. 375 с.
- Анискин Н.А., То Ван Тхань. Прогноз фильтрационного режима грунтовой плотины Юмагузинского гидроузла и ее основания // Гидротехническое строительство. 2005. № 6. С. 19–25.
- Саинов М.П. Пространственная работа противофильтрационной стены // Инженерно-строительный журнал. 2015. № 5 (57). С. 20–33. doi: 10.5862/MCE.57.2
- Рассказов Л.Н., Джха Дж. Деформируемость и прочность грунта при расчете высоких грунтовых плотин // Гидротехническое строительство. 1997. № 7. С. 31–36.
- Самуль В.И. Основы теории упругости и пластичности : учебное пособие. М. : Высшая школа, 1982. 264 с.
- Фадеев А.Б. Метод конечных элементов в геомеханике. М. : Недра, 1987. 221 с.
- Бате К., Вильсон Е. Численные методы анализа и метод конечных элементов. М. : Стройиздат, 1982. 447 с.
- Clough R., Penzien J. Dynamics of Structures. Second ed. McGrawHill, Inc., 1993.
- Wilson E.L. Three-dimensional static and dynamic analysis of structures a physical approach with emphasis on earthquake engineering. Third ed. Computers and Structures, Inc., Berkeley, California, USA, 2002. 423 p.
- Wolf J.P. Dynamic soil-structure interaction. Prentice-Hall, Englewood Cliffs, N.J., 1985. 466 p.
- Шейнин И.С. Колебания конструкций гидросооружений в жидкости. Л. : Энергия, 1967.
- Кобелова Н.Н. Методологические особенности построения прогнозных математических моделей для изучения деформаций высоких плотин // Вестник СГУГиТ. 2017. Т. 22. № 2. С. 55–66.
- Мирсаидов М.М. Теория и методы расчета грунтовых сооружений на прочность и сейсмостойкость. Ташкент : Фан, 2010. 312 с.
- Беллендир Е.Н., Липовецкая Т.Ф., Радченко В.Г., Сапегин Д.Д. Рекомендации российских нормативных документов по обеспечению надежности грунтовых плотин // Известия ВНИИГ им. Б.Е. Веденеева. 2000. Т. 238. С. 5–14.
- Саинов М.П., Чечеткин И.П. Оценка трещиностойкости ядра каменно-земляной плотины с учетом порового давления // Вестник Евразийской науки. 2020. Т. 12. № 4. URL: https://esj.today/PDF/09SAVN420.pdf
- Sharma R.P., Kumar A. Case histories of earthen dam failures // 7th Conference of the International Conference on Case Histories in Geotechnical Engineering. 2013. URL: https://scholarsmine.mst.edu/icchge/7icchge/session03/8
- Ji E., Chen S., Fu Z. Research on criterions of hydraulic fracturing in earth core rockfill dams // IOP Conference Series: Earth and Environmental Science. 2019. Vol. 304. Issue 2. P. 022032. doi: 10.1088/1755-1315/304/2/022032
Supplementary files
