Investigation of hydrodynamic impact on an unevenly buried pipeline in a permeable bottom
- Authors: Sherstnev D.Y.1, Bryanskaya Y.V.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Issue: Vol 13, No 4 (2023)
- Pages: 49-62
- Section: Building structures. Soils and foundations. Technology and organization of construction. Designing of buildings and constructions. Engineering survey and inspection of buildings
- URL: https://journals.rcsi.science/2305-5502/article/view/251863
- DOI: https://doi.org/10.22227/2305-5502.2023.4.3
- ID: 251863
Cite item
Full Text
Abstract
Introduction. When designing pipeline crossings for various purposes, the solution of many engineering problems is associated with the calculation of velocity distribution and estimation of hydraulic resistance created by them. Since it is very difficult to estimate the value of hydrodynamic resistance coefficients and lifting force by theoretical means, experimental studies are usually resorted to. Pipelines can be positioned in different ways in relation to the flow, and in practice pipelines are also buried in the bottom of the watercourse. In physical experiments, a partially buried pipeline is often modelled by truncating the buried section of the pipeline. This experimental setup is more suitable for a pipeline located in an impermeable bottom. In reality, erosion-prone bottoms are often porous and permeable.Materials and methods. Hydrodynamic forces acting on a pipeline with uneven depth on both sides, on a permeable bottom, are numerically studied. Two-dimensional Navier – Stokes equations averaged over Reynolds with k–e turbulence model are used to simulate fluid flow. The seepage flow at the permeable bottom is assumed to obey Darcy’s law, the Laplace equation is solved to calculate the pore pressure assuming an isotropic and homogeneous bottom. The flow structure and pressure distribution around the pipeline are considered. The ANSYS Fluent software package is used for numerical modelling.Results. It was found that the flow structure around the pipeline is asymmetric due to the difference in bottom levels on the two sides of the pipeline. The process of scouring of the sandy bottom in the area of the pipeline location was modelled in ANSYS Fluent. Comparison of calculation results at different flow rates was made. It was found that there is an obvious difference between the hydrodynamic forces experienced by the pipeline due to the asymmetric flow structure around the pipeline.Conclusions. Peak values of external forces and lift force decreasing as the value of depth into the bottom behind the pipeline increases (e2/D). The maximum error of the drag and lift forces calculated using sixth order Fourier series is about 4 %.
About the authors
D. Yu. Sherstnev
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: sherstnevdmitrii@yandex.ru
Yu. V. Bryanskaya
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: mgsu-hydraulic@yandex.ru
ORCID iD: 0000-0002-6233-3690
References
- Дейнеко С.В. Обеспечение надежности систем трубопроводного транспорта нефти и газа. М. : Техника, 2011. 176 с. EDN YWYIHZ.
- Шерстнёв Д.Ю., Брянский И.А., Брянская Ю.В. Взаимодействие водного потока и подводных трубопроводных переходов // Вестник МГСУ. 2023. Т. 18. № 3. С. 447–454. doi: 10.22227/1997-0935.2023.3.447-454
- Дебольский В.К. Аварии подводных нефте- и газопроводов и их последствия для водных объектов // Защита населения и территорий при чрезвычайных ситуациях в мирное и военное время как составная часть национальной безопасности России : тез. докл. и выступлений. 1997. С. 234–235. EDN VSSVMT.
- Хлынцева Е.О. Русловые деформации в местах подводных переходов магистральных трубопроводов, геодезические методы их определения и прогнозирование для обеспечения экологической безопасности природной среды // Омский научный вестник. 2005. № 2. С.166–169.
- Дзарданов О.И. Определение степени безопасности подводных переходов газопроводов в сложных инженерно-геологических условиях // Записки горного института. 2008. Т. 178. С. 43–46. EDN LHPWXB.
- Bryanskiy I.A., Borovkov V.S. Velocity distribution along the flow depth in the pipe crossing’s area of influence // Power Technology and Engineering. 2021. Vol. 55. Issue 1. Pp. 26–29. doi: 10.1007/s10749-021-01314-2
- Azamathulla H.Md., Zakaria N.A. Prediction of scour below submerged pipeline crossing a river using ANN // Water Science and Technology. 2011. Vol. 63. Issue 1. Pp. 2225–2230. doi: 10.2166/wst.2011.459
- Azamathulla H.Md., Yusoff M.A.M., Hasan Z.A. Scour below submerged skewed pipeline // Journal of Hydrology. 2014. Vol. 509. Pp. 615–620. doi: 10.1016/j.jhydrol.2013.11.058
- Myrhaug D., Ong M.C., Føien H., Gjengedal C., Leira B.J. Scour below pipelines and around vertical piles due to second-order random waves plus a current // Ocean Engineering. 2009. Vol. 36. Issue 8. Pp. 605–616. doi: 10.1016/j.oceaneng.2009.02.007
- Sumer B.M., Jensen H.R., Mao Y., Fredsøe J. Effect of lee-wake on scour below pipelines in current // Journal of Waterway, Port, Coastal, and Ocean Engineering. 1988. Vol. 114. Issue 5. Pp. 599–614. doi: 10.1061/(asce)0733-950x(1988)114:5(599)
- Dey S., Singh N.P. Clear-water scour depth below underwater pipelines // Journal of Hydro-Environment Research. 2007. Vol. 1. Issue 2. Pp. 157–162. doi: 10.1016/j.jher.2007.07.001
- Myrhaug D., Ong M.C., Gjengedal C. Scour below marine pipelines in shoaling conditions for random waves // Coastal Engineering. 2008. Vol. 55. Issue 12. Pp. 1219–1223. doi: 10.1016/j.coastaleng.2008.03.006
- Zhang Q., Draper S., Cheng L., An H. Effect of limited sediment supply on sedimentation and the onset of tunnel scour below subsea pipelines // Coastal Engineering. 2016. Vol. 116. Pp. 103–117. doi: 10.1016/j.coastaleng.2016.05.010
- Dong H., Huang P., Sun Z., Li Z., Chong L. See fewer numerical simulation of local scour and flow field around pipelines // Journal of Coastal Research. 2020. Vol. 111. Issue sp1. doi: 10.2112/JCR-SI111-049.1
- Damroudi M., Esmaili K., Rajaie S.H. Effect of pipeline external geometry on local scour and self-burial time scales in current // Journal of Applied Fluid Mechanics. 2021. Vol. 14. Issue 1. doi: 10.47176/jafm.14.01.31399
- Zhu Y., Xie L., Su T.-C. Scour protection effects of a geotextile mattress with floating plate on a pipeline // Sustainability. 2020. Vol. 12. Issue 8. P. 3482. doi: 10.3390/SU12083482
- Sumer B.M., Fredsøe J. Scour below pipelines in waves // Journal of Waterway, Port, Coastal, and Ocean Engineering. 1990. Vol. 116. Issue 3. Pp. 307–323. doi: 10.1061/(asce)0733-950x(1990)116:3(307)
- Parker M.E., Herbich J.B. Drag and inertia coefficients for partially buried offshore pipelines // All Days. 1978. doi: 10.4043/3072-ms
- Кантаржи И.Г., Гогин А.Г. Устойчивость подводного трубопровода при воздействии течения и волн // Гидротехническое строительство. 2021. № 4. С. 28–34. EDN LNOGNA.
- Боровков В.С., Брянский И.А., Юмашева М.А. Особенности поперечного обтекания водным потоком тел различной формы при наличии экрана // Научное обозрение. 2017. № 6. С. 27–32. EDN ZFCFWF.
- Дегтярёв В.В., Гармакова М.Е., Шумкова М.Н., Шлычков В.А. Численное моделирование деформаций речных русел при гидротехническом строительстве // Известия высших учебных заведений. Строительство. 2020. № 5 (737). С. 105–117. doi: 10.32683/0536-1052-2020-737-5-105-117. EDN CKOKOD.
- Jacobsen V. Forces on sheltered pipelines // Offshore Technology Conference. 1988. doi: 10.4043/5851-ms
- An H., Cheng L., Zhao M. Numerical simulation of a partially buried pipeline in a permeable seabed subject to combined oscillatory flow and steady current // Ocean Engineering. 2011. Vol. 38. Issue 10. Pp. 1225–1236. doi: 10.1016/j.oceaneng.2011.05.010
- Брянский И.А., Боровков В.С. Гидравлические характеристики турбулентного потока при обтекании препятствий // Гидротехническое строительство. 2020. № 2. С. 37–41. EDN PRQPRE.
- Neill I.A., Hinwood J.B. Wave and wave-current loading on a bottom-mounted circular cylinder // International Journal of Offshore and Polar Engineering. 1998. Pp. 122–129.
- Chiew Y.M. Mechanics of local scour around submarine pipelines // Journal of Hydraulic Engineering. 1990. Vol. 116. Issue 4. Pp. 515–529. doi: 10.1061/(asce)0733-9429(1990)116:4(515)
- Дегтярев В.В., Гармакова М.Е., Федорова Н.Н., Шумкова М.Н., Яненко А.П., Гринь Г.А. Моделирование динамики речного потока и русловые переформирования на участках расположения подводных трубопроводов // Известия высших учебных заведений. Строительство. 2019. № 7 (727). С. 86–97. doi: 10.32683/0536-1052-2019-727-7-86-97. EDN AHUTHE.
- Гармакова М.Е., Дегтярев В.В. Моделирование процесса размыва донного грунта в зоне расположения подводных трубопроводов // Динамика многофазных сред : тез. XVI Всерос. семинара с междунар. участием. 2019. С. 40–41. EDN UMDXRS.
Supplementary files
