Optimization of pile field structural calculations based on CPT data

详细

Introduction. The current practice of pile foundation selection is a time-consuming, incoherent and non-standardized process. The aim of the study is to develop a methodology for optimizing structural calculations on the example of a pile field, based on cone penetration test data. For this purpose it is necessary: to prepare an algorithm for processing data from engineering-geological surveys; to develop a strictly deterministic process of justification of the best option depending on the cost of the pile foundation; to obtain a visual representation of the data for the possibility of verification of the selected solution.Materials and methods. A genetic algorithm is used to optimize structural calculations of the pile field, which is implemented using the Galapagos plug-in based on the Grasshopper visual programming language. Python programming language is used to prepare initial data of geotechnical engineering surveys.Results. Linked algorithms for cone penetration test data processing and preliminary estimation of the optimal pile foundation configuration based on its total cost, on the bearing capacity of the pile foundation soil were developed.Conclusions. The developed algorithms can be used for preliminary calculation and rapid evaluation of pile foundation options. The required input data can be generated from calculation programmes. Alternatively, selection and optimization can be performed directly in Python code, using Grasshopper and Rhino only for force extraction and subsequent visualization of the results. Areas for further research and development include: consideration of layered geotechnical elements; estimation of the bearing capacity of each foundation footing independently and according to the underlying geotechnical elements; grouping of piles according to their position in the pile field and loads; consideration of the non-linear behaviour of the soil mass.

作者简介

P. Nedviga

Peter the Great St. Petersburg Polytechnic University (SPbPU)

Email: pavel.nedviga@gmail.com
ORCID iD: 0000-0003-0857-8301
SPIN 代码: 4626-6726

A. Kukina

Peter the Great St. Petersburg Polytechnic University (SPbPU)

Email: kukina_aa@spbstu.ru
ORCID iD: 0000-0003-4271-7408
SPIN 代码: 9190-9276

M. Tachkov

Peter the Great St. Petersburg Polytechnic University (SPbPU)

Email: politeh_maks21992199@mail.ru
ORCID iD: 0000-0002-7831-7548

参考

  1. Викторова О.Л., Фатеев Д.А. Обоснование принятого варианта конструктивного решения фундаментов // Моделирование и механика конструкций. 2021. № 13. С. 184–193. EDN NHOLMJ.
  2. Соколов Н.С. Выбор типа буровых свай по технико-экономическим параметрам // Новое в архитектуре, проектировании строительных конструкций и реконструкции : мат. IV Междунар. (X Всерос.) конф. 2018. С. 430–438. EDN MBODWE.
  3. Мельников В.А., Алексеев Н.С., Ионов К.И. Сравнительный анализ методик расчета осадки свайных фундаментов // Современные научные исследования и инновации. 2015. № 9–1 (53). С. 37–45. EDN ULQMFZ.
  4. Стольникова К.А., Петроченко М.В. Зависимость сметной стоимости работ по устройству свайного фундамента от уровня детализации (LOD) BIM-модели // Неделя науки ИСИ : мат. Всерос. конф. в 3-х частях. 2021. С. 64–67. EDN AUVMEV.
  5. Георгиев Н.Г., Шумилов К.А. Применение визуального программирования при моделировании строительных конструкций // Инновации. Наука. Образование. 2021. № 34. С. 1418–1422. EDN AAXTTM.
  6. Banihashemi S., Tabadkani A., Hosseini M.R. Integration of parametric design into modular coordination: A construction waste reduction workflow // Automation in Construction. 2018. Vol. 88. Pp. 1–12. doi: 10.1016/j.autcon.2017.12.026
  7. Girardet A., Boton C. A parametric BIM approach to foster bridge project design and analysis // Automation in Construction. 2021. Vol. 126. P. 103679. doi: 10.1016/j.autcon.2021.103679
  8. Nadyrshine N., Nadyrshine L., Khafizov R., Ibragimova N., Mkhitarian K. Parametric methods for constructing the Islamic ornament // E3S Web of Conferences. 2021. Vol. 274. P. 09009. doi: 10.1051/e3sconf/202127409009
  9. Freitas J., Cronemberger J., Soares R.M., Amorim C.N.D. Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug // Renewable Energy. 2020. Vol. 160. Pp. 1468–1479. doi: 10.1016/j.renene.2020.05.137
  10. Preisinger C. Linking structure and parametric geometry // Architectural Design. 2013. Vol. 83. Issue 2. Pp. 110–113. doi: 10.1002/ad.1564
  11. He L., Li Q., Gilbert M., Shepherd P., Rankine C., Pritchard T. et al. Optimization-driven conceptual design of truss structures in a parametric modelling environment // Structures. 2022. Vol. 37. Pp. 469–482. doi: 10.1016/j.istruc.2021.12.048
  12. Lartigue B., Lasternas B., Loftness V. Multi-objective optimization of building envelope for energy consumption and daylight // Indoor and Built Environment. 2014. Vol. 23. Issue 1. Pp. 70–80. doi: 10.1177/1420326X13480224
  13. Li J., Zhao H. Multi-objective optimization and performance assessments of an integrated energy system based on fuel, wind and solar energies // Entropy. 2021. Vol. 23. Issue 4. P. 431. doi: 10.3390/e23040431
  14. Wortmann T., Natanian J. Multi-objective optimization for zero-energy urban design in China: A benchmark // Proceedings of the SimAUD. 2020. Pp. 203–210.
  15. Benjaoran V., Peansupap V. Grid-based construction site layout planning with particle swarm optimisation and travel path distance // Construction Management and Economics. 2020. Vol. 38. Issue 8. Pp. 673–688. doi: 10.1080/01446193.2019.1600708
  16. Turrin M., von Buelow P., Stouffs R. Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms // Advanced Engineering Informatics. 2011. Vol. 25. Issue 4. Pp. 656–675. doi: 10.1016/j.aei.2011.07.009
  17. Yang D., Sun Y., Turrin M., Von B.P., Paul J. Multi-objective and multidisciplinary design optimization of large sports building envelopes: a case study // Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium. 2015.
  18. Rutten D. Galapagos: On the Logic and Limitations of Generic Solvers // Archit Design. 2013. Vol. 83. Pp. 132-135. doi: 10.1002/ad.1568
  19. Петраш А.В., Петраш Р.В. Выбор типа свайных фундаментов при условии наиболее полного использования их несущей способности по материалу // Будущее науки — 2013 : мат. Междунар. молодежной науч. конф. 2013. С. 170–173. EDN TMFFTT.
  20. Oh Y.P., Mohamad Ismail M.A. Pile length optimization by using shaft friction and end bearing curves developed from instrumented pile load test // Physics and Chemistry of the Earth, Parts A/B/C. 2023. Vol. 129. P. 103278. doi: 10.1016/j.pce.2022.103278
##common.cookie##