The Impact of Alkyl Substituents in the Polycation Structure: Physicochemical and Gas Separation Properties of Poly(Ionic Liquids) Based on Butylimidazolium and Triethylammonium
- Autores: Otvagina K.V.1, Zarubin D.M.1, Golovacheva A.A.1, Smirnova D.N.1, Feshina D.I.1, Fukina D.G.1, Kazarina O.V.1, Petukhov A.N.1, Vorotyntsev A.V.1
-
Afiliações:
- Lobachevsky State University of Nizhny Novgorod
- Edição: Volume 15, Nº 4 (2025)
- Páginas: 246-256
- Seção: Articles
- URL: https://journals.rcsi.science/2218-1172/article/view/355160
- DOI: https://doi.org/10.31857/S2218117225040021
- ID: 355160
Citar
Resumo
Sobre autores
K. Otvagina
Lobachevsky State University of Nizhny Novgorod
Email: k.v.otvagina@gmail.com
Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia
D. Zarubin
Lobachevsky State University of Nizhny NovgorodGagarina Avenue 23, Nizhny Novgorod, 603950, Russia
A. Golovacheva
Lobachevsky State University of Nizhny NovgorodGagarina Avenue 23, Nizhny Novgorod, 603950, Russia
D. Smirnova
Lobachevsky State University of Nizhny NovgorodGagarina Avenue 23, Nizhny Novgorod, 603950, Russia
D. Feshina
Lobachevsky State University of Nizhny NovgorodGagarina Avenue 23, Nizhny Novgorod, 603950, Russia
D. Fukina
Lobachevsky State University of Nizhny NovgorodGagarina Avenue 23, Nizhny Novgorod, 603950, Russia
O. Kazarina
Lobachevsky State University of Nizhny NovgorodGagarina Avenue 23, Nizhny Novgorod, 603950, Russia
A. Petukhov
Lobachevsky State University of Nizhny NovgorodGagarina Avenue 23, Nizhny Novgorod, 603950, Russia
A. Vorotyntsev
Lobachevsky State University of Nizhny NovgorodGagarina Avenue 23, Nizhny Novgorod, 603950, Russia
Bibliografia
- Baker R.W. Future directions of membrane gas separation technology // Ind. Eng. Chem. Res. 2002. V. 41. № 6. P. 1393–1411.
- Fane A.G., Wang R., Jia Y. Membrane technology: past, present and future // Membrane and Desalination Technologies. Berlin; Heidelberg: Springer, 2011. P. 1–45 .
- Mohamed M., Hastuti R., Alamsyah A., Kadja G.T.M., Khoiruddin K., Kurnia K.A., Yuliarto B., Wenten I.G. Polyionic liquid membrane: recent development and perspective // J. Ind. Eng. Chem. 2022. V. 113. P. 96–123 .
- Tomé L.C., Gouveia A.S.L., Freire C.S.R., Mecerreyes D., Marrucho I.M. Polymeric ionic liquid-based membranes: influence of polycation variation on gas transport and CO 2 selectivity properties // J. Membr. Sci. 2015. V. 486. P. 40–48 .
- Yuan J., Antonietti M. Poly(ionic liquid) latexes prepared by dispersion polymerization of ionic liquid monomers // Macromolecules. 2011. V. 44. № 4. P. 744–750 .
- Bara J.E., Lessmann S., Gabriel C.J., Hatakeyama E.S., Noble R.D., Gin D.L. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes // Ind. Eng. Chem. Res. 2007. V. 46. P. 5397–5404.
- Marrucho I.M., Tomé L.C., Mecerreyes D. Ionic liquids and polymers for CO 2 capture and separation: a perfect match // J. Membr. Sci. 2018. V. 566. P. 307–317 .
- Bhavsar R.S., Kumbharkar S.C., Kharul U.K. Polymeric ionic liquids (PILs): effect of anion variation on their CO 2 sorption // J. Membr. Sci. 2012. V. 389. P. 305–315 .
- Ogihara W., Washiro S., Nakajima H., Ohno H. Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids // Electrochim. Acta. 2006. V. 51. P. 2614–2619.
- Green O., Grubjesic S., Lee S., Firestone M.A. The design of polymeric ionic liquids for the preparation of functional materials // Polym. Rev. 2009. V. 49. P. 339–360.
- Morozova S.M., Lozinskaya E.I., Sardon H., Suárez-García F., Vlasov P.S., Vaudemont R., Vygodskii Y.S., Shaplov A.S. Ionic polyureas — a novel subclass of poly(ionic liquid)s for CO₂ capture // Membranes. 2020. V. 10 . № 9. Art. 240.
- Durga G., Kalra P., Verma V.K., Wangdi K., Mishra A. Ion ic liquids: from a solvent for polymeric reactions to the monomers for poly(ionic liquids) // J. Mol. Liq. 2021. V. 335. P. 116540.
- Ravula S., O’Harra K.E., Watson K.A., Bara J.E. Poly(ionic liquid)s with dicationic pendants as gas separation membranes // Membranes. 2022. V. 12. № 3. Art. 264.
- Mazzei I.R., Nikolaeva D., Fuoco A., Loïs S., Fantini S., Monteleone M., Esposito E., Ashtiani S.J., Lanč M., Vopička O., Jansen J.C. Poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate/Pebax® 1657 composite membranes and their gas separation performance // Membranes. 2020. Vol. 10. № 9. Art. 224.
- Nikolaeva D., Azcune I., Sheridan E., Sandru M., Genua A., Tanczyk M., Jaschik M., Warmuzinski K., Jansen J.C., Vankelecom I.F.J. Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO 2 capture from flue gas // J. Mater. Chem. A. 2017. V. 5. P. 19808–19818.
- Атласкина М.Е., Казарина О.В., Мочалова А.Е., Воротынцев И.В. Синтез мономерных ионных жидкостей на основе 4-винилбензилхлорида как прекурсоров материала для селективного слоя газоразделительных мембран // Мембраны и мембранные технологии. 2021. Т. 3. № 1. С. 36–42 .
- Otvagina K.V., Maslov A.A., Fukina D.G., Petukhov A.N., Malysheva Y.B., Vorotyntsev A.V., Sazanova T.S., Atlaskin A.A., Kapinos A.A., Barysheva A.V., Suvorov S.S., Zanozin I.D., Dokin E.S., Vorotyntsev I.V., Kazarina O.V. The influence of polycation and counter-anion nature on the properties of poly(ionic liquid)-based membranes for CO 2 separation // Membranes. 2023. V. 13 . № 6. Art. 539.
- Neves L.A., Akhmetshina A.I., Gumerova O.R., Atlaskin A.A., Petukhov A.N., Sazanova T.S., Yanbikov N.R., Nyuchev A.V., Razov E.N., Vorotyntsev I.V. Integrated CO₂ capture and enzymatic bioconversion in supported ionic liquid membranes // Sep. Purif. Technol. 2012. V. 97. P. 34–41 .
Arquivos suplementares

