The Impact of Alkyl Substituents in the Polycation Structure: Physicochemical and Gas Separation Properties of Poly(Ionic Liquids) Based on Butylimidazolium and Triethylammonium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the polycation structure on the physicochemical and gas separation properties of poly(ionic liquids) was investigated while maintaining the same set of counter anions (BF 4 , PF 6 , Tf 2 N ). It was found that increasing the alkyl chain length and replacing the imidazolium cation with a triethylammonium one lead to changes in interionic interactions, a decrease in density and surface polarity, and an increase in the free volume of the polymer matrix. These structural modifications affect the gas transport properties of the membranes: samples containing the Tf 2 N anion exhibit the highest CO 2 permeability values while maintaining high selectivity for CO 2 /CH 4 and CO 2 /N 2 gas pairs. The results demonstrate that a combined variation of the alkyl substituent in the polycation and the weakly coordinating anion allows for targeted tuning of the structure and gas separation performance of poly(ionic liquid)-based membranes, making them promising materials for CO 2 capture and separation applications.

About the authors

K. V. Otvagina

Lobachevsky State University of Nizhny Novgorod

Email: k.v.otvagina@gmail.com
Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

D. M. Zarubin

Lobachevsky State University of Nizhny Novgorod

Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

A. A. Golovacheva

Lobachevsky State University of Nizhny Novgorod

Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

D. N. Smirnova

Lobachevsky State University of Nizhny Novgorod

Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

D. I. Feshina

Lobachevsky State University of Nizhny Novgorod

Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

D. G. Fukina

Lobachevsky State University of Nizhny Novgorod

Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

O. V. Kazarina

Lobachevsky State University of Nizhny Novgorod

Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

A. N. Petukhov

Lobachevsky State University of Nizhny Novgorod

Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

A. V. Vorotyntsev

Lobachevsky State University of Nizhny Novgorod

Gagarina Avenue 23, Nizhny Novgorod, 603950, Russia

References

  1. Baker R.W. Future directions of membrane gas separation technology // Ind. Eng. Chem. Res. 2002. V. 41. № 6. P. 1393–1411.
  2. Fane A.G., Wang R., Jia Y. Membrane technology: past, present and future // Membrane and Desalination Technologies. Berlin; Heidelberg: Springer, 2011. P. 1–45 .
  3. Mohamed M., Hastuti R., Alamsyah A., Kadja G.T.M., Khoiruddin K., Kurnia K.A., Yuliarto B., Wenten I.G. Polyionic liquid membrane: recent development and perspective // J. Ind. Eng. Chem. 2022. V. 113. P. 96–123 .
  4. Tomé L.C., Gouveia A.S.L., Freire C.S.R., Mecerreyes D., Marrucho I.M. Polymeric ionic liquid-based membranes: influence of polycation variation on gas transport and CO 2 selectivity properties // J. Membr. Sci. 2015. V. 486. P. 40–48 .
  5. Yuan J., Antonietti M. Poly(ionic liquid) latexes prepared by dispersion polymerization of ionic liquid monomers // Macromolecules. 2011. V. 44. № 4. P. 744–750 .
  6. Bara J.E., Lessmann S., Gabriel C.J., Hatakeyama E.S., Noble R.D., Gin D.L. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes // Ind. Eng. Chem. Res. 2007. V. 46. P. 5397–5404.
  7. Marrucho I.M., Tomé L.C., Mecerreyes D. Ionic liquids and polymers for CO 2 capture and separation: a perfect match // J. Membr. Sci. 2018. V. 566. P. 307–317 .
  8. Bhavsar R.S., Kumbharkar S.C., Kharul U.K. Polymeric ionic liquids (PILs): effect of anion variation on their CO 2 sorption // J. Membr. Sci. 2012. V. 389. P. 305–315 .
  9. Ogihara W., Washiro S., Nakajima H., Ohno H. Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids // Electrochim. Acta. 2006. V. 51. P. 2614–2619.
  10. Green O., Grubjesic S., Lee S., Firestone M.A. The design of polymeric ionic liquids for the preparation of functional materials // Polym. Rev. 2009. V. 49. P. 339–360.
  11. Morozova S.M., Lozinskaya E.I., Sardon H., Suárez-García F., Vlasov P.S., Vaudemont R., Vygodskii Y.S., Shaplov A.S. Ionic polyureas — a novel subclass of poly(ionic liquid)s for CO₂ capture // Membranes. 2020. V. 10 . № 9. Art. 240.
  12. Durga G., Kalra P., Verma V.K., Wangdi K., Mishra A. Ion ic liquids: from a solvent for polymeric reactions to the monomers for poly(ionic liquids) // J. Mol. Liq. 2021. V. 335. P. 116540.
  13. Ravula S., O’Harra K.E., Watson K.A., Bara J.E. Poly(ionic liquid)s with dicationic pendants as gas separation membranes // Membranes. 2022. V. 12. № 3. Art. 264.
  14. Mazzei I.R., Nikolaeva D., Fuoco A., Loïs S., Fantini S., Monteleone M., Esposito E., Ashtiani S.J., Lanč M., Vopička O., Jansen J.C. Poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate/Pebax® 1657 composite membranes and their gas separation performance // Membranes. 2020. Vol. 10. № 9. Art. 224.
  15. Nikolaeva D., Azcune I., Sheridan E., Sandru M., Genua A., Tanczyk M., Jaschik M., Warmuzinski K., Jansen J.C., Vankelecom I.F.J. Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO 2 capture from flue gas // J. Mater. Chem. A. 2017. V. 5. P. 19808–19818.
  16. Атласкина М.Е., Казарина О.В., Мочалова А.Е., Воротынцев И.В. Синтез мономерных ионных жидкостей на основе 4-винилбензилхлорида как прекурсоров материала для селективного слоя газоразделительных мембран // Мембраны и мембранные технологии. 2021. Т. 3. № 1. С. 36–42 .
  17. Otvagina K.V., Maslov A.A., Fukina D.G., Petukhov A.N., Malysheva Y.B., Vorotyntsev A.V., Sazanova T.S., Atlaskin A.A., Kapinos A.A., Barysheva A.V., Suvorov S.S., Zanozin I.D., Dokin E.S., Vorotyntsev I.V., Kazarina O.V. The influence of polycation and counter-anion nature on the properties of poly(ionic liquid)-based membranes for CO 2 separation // Membranes. 2023. V. 13 . № 6. Art. 539.
  18. Neves L.A., Akhmetshina A.I., Gumerova O.R., Atlaskin A.A., Petukhov A.N., Sazanova T.S., Yanbikov N.R., Nyuchev A.V., Razov E.N., Vorotyntsev I.V. Integrated CO₂ capture and enzymatic bioconversion in supported ionic liquid membranes // Sep. Purif. Technol. 2012. V. 97. P. 34–41 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).