Ultrafiltration purification of waste motor oil using tubular polymer membranes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper considers the process of waste motor oil (WMO) purification using tubular polymer micro- and ultrafiltration membranes based on fluoroplastic with an average pore size of 0.5 and 0.05 μm with varying separation modes: transmembrane pressure of 0.2–0.5 MPa, temperature of the separated medium of 313–353 K. It is shown that the ultrafiltration membrane has a higher retention capacity for asphalt-resinous degradation products compared to the microfiltration membrane. Thus, the kinematic viscosity coefficient in the permeate after the UFFK membrane decreased from 10.84 to 4.76 mm2/s, and after the MFFK membrane - from 10.84 to 7.9 mm2/s. The highest efficiency of the purification process was achieved by the ultrafiltration method at a transmembrane pressure of 0.3–0.4 MPa and a temperature of 343–353 K. Analysis of the IR spectra of the original waste oil and permeate showed that membrane filtration allows for the effective removal of oxidation products from WMO without changing its hydrocarbon composition, which confirms the potential of this technology for the regeneration of waste oils.

About the authors

A. V. Markelov

Yaroslavl State Technical University

Email: aleksandr203.37@mail.ru
Yaroslavl, 150023 Russia

A. P. Nebesskaya

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Moscow, 119071 Russia

A. V. Balynin

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Moscow, 119071 Russia

V. V. Volkov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Moscow, 119071 Russia

References

  1. Шашкин П.И. Регенерация отработанных нефтяных масел. М.: Химия, 1970. 304 с.
  2. Hvang S-T., Kammermejer K. Membrane in separation. New York, London, Syndey, Toronto: A wiley-interscience publication? John Wiley & Sons, 1981. 464 p.
  3. Francois А. Waste Engine Oils: Rerefining and Energy Recovery. Elsevier Science, 2006. 340 p.
  4. Brinkman D.W., Parry B.J. Recycling, Oil. In: Kirk- Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc, 2005.
  5. Firas А. Elsevier, 2006. 122 p.
  6. Lashkhi V.L., Fuks I.G., Shor G.I. // Chem. Technol. Fuels Oils. 1991. V. 27. P. 311.
  7. Widodo S., Ariono D., Khoiruddin K., Hakim A.N., Wenten I.G. // Environmental Progress & Sustainable Energy. 2018. V. 37. № 6. P. 1867.
  8. Nebesskaya A.P., Balynin A.V., Yushkin A.A., Markelov A.V., Volkov V.V. // Membranes and Membrane Technologies. 2024. V. 6. № 5. P. 350.
  9. Akumefula M.I., Chikwe I.S., Eziukwu C.C. // Chem-Class Journal. 2025. V. 9. № 1. Р. 70.
  10. Fedosov S.V., Markelov A.V., Sokolov A.V., Osadchy Yu.P. // Membranes and Membrane Technologies. 2022. V. 4. № 5. Р. 297.
  11. Fedosov S.V., Markelov A.V., Osadchii Yu.P. // Theoretical Foundations of Chemical Engineering. 2024. V. 58. № 3. P. 564.
  12. Mynin V.N., Smirnova E.B., Katsereva O.V., Komyagin E.A., Terpugov G.V., Smirnov V.N. // Chemistry and Technology of Fuels and Oils. 2004. V. 40. № 5. P. 345.
  13. Psoch C., Wendler B., Goers B., Wozny G., Ruschel B. // Journal of Membrane Science. 2004. V. 245. № 1. P. 113.
  14. Gourgouillon D., Schrive L., Sarrade S. // Environmental Science & Technology. 2000. V. 34. № 16. P. 3469.
  15. Gourgouillon D., Schrive L., Sarrade S., Rios G.M. // Separation Science and Technology. 2000. V. 35. № 13. P. 2045.
  16. Sarrade S., Guizard C., Rios G.M. // Desalination. 2002. V. 144. № 1–3. P. 137.
  17. https://doi.org/10.1016/S0011-9164(02)00302-8
  18. Rodriguez C., Sarrade S., Schrive L., Dresch-Bazile M., Paolucci D., Rios G.M. // Desalination. 2002. V. 144. № 1. P. 173.
  19. Markelov A.V. // ChemChemTech. 2023. V. 66. № 1. Р. 114.
  20. Trusek A., Wajsprych M., Tyrka M., Noworyta A. // Desalination and Water Treatment. 2021. V. 214. Р. 120.
  21. Lyadov A.S., Kochubeev A.A., Nebesskaya A.P. // Pet. Chem. 2025. V. 65. Р. 1.
  22. Кравченко Н.Г., Козлов И.А., Щекин В.К., Ефимова Е.А. // Научно-технический журнал “ТРУДЫ ВИАМ”. 2021. № 1. С. 105–113. https://doi.org/10.18577/2307-6046-2021-0-1-105-113
  23. Капустин В.М., Рудин М.Г., Кукес С.Г. Справочник нефтепереработчика. М.: Химия, 2018. 416 с.
  24. Воробьева Г.Я. Химическая стойкость полимерных материалов. М.: Химия, 1981. 296 с.
  25. Sarkar S., Datta D., Das B. // Materials Today: Proceedings. 2022. V. 49. P. 1891.
  26. Abu-Elella R., et al. // Int. J. Chem. Biochem. Sci. 2015. V. 7. P. 57.
  27. Cao Y., et al. // Desalination and Water Treatment. 2009. V. 11. № 1–3. P. 73.
  28. Bellamy L. The Infra-Red Spectra of Complex Molecules. Berlin/Heidelberg, Germany: Springer Science & Business Media, 2012. 300 р.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).