The Krzyz conjecture and convex univalent functions
- 作者: Stupin D.L.1
-
隶属关系:
- Tver State University
- 期: 卷 27, 编号 1 (2025)
- 页面: 81-96
- 栏目: Mathematics
- ##submission.dateSubmitted##: 30.06.2025
- ##submission.dateAccepted##: 30.06.2025
- ##submission.datePublished##: 26.02.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/298158
- ID: 298158
如何引用文章
全文:
详细
作者简介
Denis Stupin
Tver State University
编辑信件的主要联系方式.
Email: dstupin@mail.ru
ORCID iD: 0000-0002-9183-9543
参考
- J. G. Krzyz, "Coefficient problem for bounded nonvanishing functions", Ann. Polon. Math., 70 (1968), 314.
- J. A. Hummel, S. Scheinberg, L. A. Zalcman, "A coefficient problem for bounded nonvanishing functions", J.d'Analyse Mathematique, 31 (1977), 169–190. doi: 10.1007/BF02813302.
- W. Szapiel, "A new approach to the Krzyz conjecture", Ann. Univ. M. CurieSklodowska. Sec. A, 48 (1994), 169–192.
- N. Samaris, "A proof of Krzyz's conjecture for the fifth coefficient", Compl. Var. Theory and Appl., 48 (2003), 48–82. doi: 10.1080/0278107031000152616.
- D. L. Stupin, "One method of estimating moduli of Taylor coefficients of subordinate functions", Voronezh State University Reports. Physics. Mathematics, 2024, no. 2, 71–84.
- D. L. Stupin, "A new method of estimation of modules of initial Taylor coefficients on the class of bounded nonvanishing functions", Russian Universities Reports. Mathematics, 29:145 (2024), 98–120. doi: 10.20310/2686-9667-2024-29-145-98-120 (In Russ.).
- W. Rogosinski, "On the coefficients of subordinate functions", Proc. London Math. Soc., 48 (1943), 48–82. doi: 10.1112/plms/s2-48.1.48.
- D. L. Stupin, "The coefficient problem for bounded functions and its applications", Russian Universities Reports. Mathematics, 28:143 (2023), 277--297. doi: 10.20310/2686-9667-2023-28-143-277-297 (In Russ.).
- D. L. Stupin, "The sharp estimates of all initial taylor coefficients in the Krzyz problem", Application of Functional Analysis in Approximation Theory, 2010, 52–60.
- D. L. Stupin, "The sharp estimates of all initial taylor coefficients in the Krzyz's problem", Cornell University Library, 2011. doi: 10.48550/arXiv.1104.3984.
- D. L. Stupin, Kompleksnyy analiz i prilozheniya: Proceedings of the VI Petrozavodsk International Conference, Petrozavodsk, 2012.
- I. A. Aleksandrov, Conformal Mappings of Simply Connected and Multiply Connected Domains, Tomsk University Press, Tomsk, 1976, 156 p.
- I. M. Galperin, "Some Estimates for Functions Bounded in the Unit Disk", Russian Mathematical Surveys, 20:1(121) (1965), 197–202.
- E. Lindelof, "Memorie sur certaines inegalites dans la theorie des fonctions monogenes et sur quelques properietes nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel", Acta Soc. Sci. Fenn., 35:7 (1909), 1–35.
- J. E. Littlewood, Lectures on the theory of functions, Oxford university press, 1947, 251 p.
- R. Peretz, "Applications of subordination theory to the class of bounded nonvanishing functions", Compl. Var., 17:3-4 (1992), 213–222. DOI: https://doi.org/10.1080/17476939208814514.
- C. Caratheodory, "Uber die Variabilitatsbereich des Fourierschen Konstanten von Positiv Harmonischen Funktion", Rendiconti Circ. Mat., 32 (1911), 193–217. doi: 10.1007/BF03014795.
- D. L. Stupin, "Coefficient problem for functions mapping a circle into a generalized circle and the Caratheodory-Fejer problem", Application of Functional Analysis in Approximation Theory, 2012, 45–74 (In Russ.).
- Z. Lewandowski, J. Szynal, "An upper bound for the Laguerre polynomials", J. Comp. Appl. Math., 99 (1998), 529–533. doi: 10.1016/S0377-0427(98)00181-2.
- G. Schober, Univalent Functions – Selected Topics, Springer-Verlag, 1975.
- S. V. Romanova, "Asymptotic estimates of linear functionals for bounded functions that do not take a zero value'', Izvestiya vuzov. Math., 2002, no. 11, 83–85 (In Russ.).
- D. V. Prokhorov, S. V. Romanova, "Local extremal problems for bounded analytic functions without zeros", Izvestiya RAN, Seriya matematicheskaya, 70:4 (2006), 209–224. doi: 10.4213/im564 (In Russ.).
补充文件



