The Krzyz conjecture and convex univalent functions

Cover Page

Cite item

Full Text

Abstract

We obtained the sharp estimates of the moduli of the initial Taylor coefficients for functions $f$ of the class $B$ of bounded nonvanishing functions in the unit circle. Two types of estimates are obtained: one for ``large'' values of $|f(0)|$ and another one for ``small'' values of $|f(0)|$. The first type of estimates is asymptotic in the sense that it applies to an increasing number of initial coefficients as $|f(0)|$ increases. Similarly, the second type of estimates is asymptotic in the sense that it applies to an increasing number of initial coefficients as $|f(0)|$ decreases. Both types of estimates are deduced using methods of subordinate function theory and the Caratheodory-Toeplitz theorem for the Caratheodory class. This became possible due to the relation we found between the coefficients of convex univalent functions (class $S^0$) and the coefficients of the majorizing functions in the studied subclasses of the class $B$. The bounds for the applicability of the method are provided depending on $|f(0)|$ and on the coefficient number. The obtained results are applied to the theory of Laguerre polynomials. These results are compared with the previously known ones. The methods outlined here can be applied to arbitrary classes of subordinate functions.

About the authors

Denis L. Stupin

Tver State University

Author for correspondence.
Email: dstupin@mail.ru
ORCID iD: 0000-0002-9183-9543

Ph. D. in Phys. and Math., Associate Professor of the Mathematical Analysis Department
Russian Federation, 33 Zhelyabova St., Tver 170100, Russia

References

  1. J. G. Krzyz, "Coefficient problem for bounded nonvanishing functions", Ann. Polon. Math., 70 (1968), 314.
  2. J. A. Hummel, S. Scheinberg, L. A. Zalcman, "A coefficient problem for bounded nonvanishing functions", J.d'Analyse Mathematique, 31 (1977), 169–190. doi: 10.1007/BF02813302.
  3. W. Szapiel, "A new approach to the Krzyz conjecture", Ann. Univ. M. CurieSklodowska. Sec. A, 48 (1994), 169–192.
  4. N. Samaris, "A proof of Krzyz's conjecture for the fifth coefficient", Compl. Var. Theory and Appl., 48 (2003), 48–82. doi: 10.1080/0278107031000152616.
  5. D. L. Stupin, "One method of estimating moduli of Taylor coefficients of subordinate functions", Voronezh State University Reports. Physics. Mathematics, 2024, no. 2, 71–84.
  6. D. L. Stupin, "A new method of estimation of modules of initial Taylor coefficients on the class of bounded nonvanishing functions", Russian Universities Reports. Mathematics, 29:145 (2024), 98–120. doi: 10.20310/2686-9667-2024-29-145-98-120 (In Russ.).
  7. W. Rogosinski, "On the coefficients of subordinate functions", Proc. London Math. Soc., 48 (1943), 48–82. doi: 10.1112/plms/s2-48.1.48.
  8. D. L. Stupin, "The coefficient problem for bounded functions and its applications", Russian Universities Reports. Mathematics, 28:143 (2023), 277--297. doi: 10.20310/2686-9667-2023-28-143-277-297 (In Russ.).
  9. D. L. Stupin, "The sharp estimates of all initial taylor coefficients in the Krzyz problem", Application of Functional Analysis in Approximation Theory, 2010, 52–60.
  10. D. L. Stupin, "The sharp estimates of all initial taylor coefficients in the Krzyz's problem", Cornell University Library, 2011. doi: 10.48550/arXiv.1104.3984.
  11. D. L. Stupin, Kompleksnyy analiz i prilozheniya: Proceedings of the VI Petrozavodsk International Conference, Petrozavodsk, 2012.
  12. I. A. Aleksandrov, Conformal Mappings of Simply Connected and Multiply Connected Domains, Tomsk University Press, Tomsk, 1976, 156 p.
  13. I. M. Galperin, "Some Estimates for Functions Bounded in the Unit Disk", Russian Mathematical Surveys, 20:1(121) (1965), 197–202.
  14. E. Lindelof, "Memorie sur certaines inegalites dans la theorie des fonctions monogenes et sur quelques properietes nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel", Acta Soc. Sci. Fenn., 35:7 (1909), 1–35.
  15. J. E. Littlewood, Lectures on the theory of functions, Oxford university press, 1947, 251 p.
  16. R. Peretz, "Applications of subordination theory to the class of bounded nonvanishing functions", Compl. Var., 17:3-4 (1992), 213–222. DOI: https://doi.org/10.1080/17476939208814514.
  17. C. Caratheodory, "Uber die Variabilitatsbereich des Fourierschen Konstanten von Positiv Harmonischen Funktion", Rendiconti Circ. Mat., 32 (1911), 193–217. doi: 10.1007/BF03014795.
  18. D. L. Stupin, "Coefficient problem for functions mapping a circle into a generalized circle and the Caratheodory-Fejer problem", Application of Functional Analysis in Approximation Theory, 2012, 45–74 (In Russ.).
  19. Z. Lewandowski, J. Szynal, "An upper bound for the Laguerre polynomials", J. Comp. Appl. Math., 99 (1998), 529–533. doi: 10.1016/S0377-0427(98)00181-2.
  20. G. Schober, Univalent Functions – Selected Topics, Springer-Verlag, 1975.
  21. S. V. Romanova, "Asymptotic estimates of linear functionals for bounded functions that do not take a zero value'', Izvestiya vuzov. Math., 2002, no. 11, 83–85 (In Russ.).
  22. D. V. Prokhorov, S. V. Romanova, "Local extremal problems for bounded analytic functions without zeros", Izvestiya RAN, Seriya matematicheskaya, 70:4 (2006), 209–224. doi: 10.4213/im564 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Stupin D.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).