Methods of numerical analysis for some integral dynamical systems with delay arguments

Cover Page

Cite item

Full Text

Abstract

The aim of this work is to construct direct and iterative numerical methods for solving functional equations with hereditary components. Such equations are a convenient tool for modeling dynamical systems. In particular, they are used in population models structured by age with a finite life span. Models based on integro-differential and integral equations with various kinds of delay arguments are considered. For nonlinear equations, the operators are linearized according to the modified Newton-Kantorovich scheme. Direct quadrature and simple iteration methods are used to discretize linear equations. These methods are constructed in the paper: an iterative method for solving a nonlinear integro-differential equation on the semiaxis  (-∞,0)(,0]">, a direct method for solving the signal recovery problem, and iterative methods for solving a nonlinear Volterra integral equation with a constant delay. Special quadrature formulas based on orthogonal Lagger polynomials are used to approximate improper integrals on the semiaxis. The results of numerical experiments confirm the convergence of suggested methods. The proposed approaches can also be applied to other classes of nonlinear equations with delays.

About the authors

Aleksandr N. Tynda

Penza State University

Author for correspondence.
Email: tyndaan@mail.ru
ORCID iD: 0000-0001-6023-9847

Ph. D. (Phys.-Math.), Associate Professor, Department of Higher and Applied Mathematics

Russian Federation, 40 Krasnaya St., Penza 440026, Russia

References

  1. H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge: Cambridge University Press, 2004, 612 p.
  2. F. Caliò, E. Marchetti, R. Pavani, "About the deficient spline collocation method for particular differential and integral equations with delay", Rend. Sem. Mat. Univ. Pol. Torino, 61 (2003), 287–300.
  3. A. Cardone, I. D. Prete, C. Nitsch, "Gaussian direct quadrature methods for double delay Volterra integral equations", Electronic Transactions on Numerical Analysis., 35 (2009), 201–216.
  4. E.Messina, E. Russo, A. Vecchio, "A convolution test equation for double delay integral equations", Journal of Computational and Applied Mathematics, 228:2 (2009), 589–599.
  5. J. M. Gushing, Volterra Integrodifferential Equations in Population Dynamics. In: Mathematics of Biology., 80, Berlin: Springer, 2010.
  6. L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon, 2nd ed., 1982, 589 p.
  7. A. F. Verlan, V. S. Sizikov, Integral equations: methods, algorithms, programms, Kiev: Naukova Dumka Publ., 1986 (in Russ).
  8. Z. Popović, "Basic mathematical models in economic-ecological control", Facta Universitatis. Economics and Organization, 5:3 (2008), 251–262.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Tynda A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».