Methods of numerical analysis for some integral dynamical systems with delay arguments
- 作者: Tynda A.N.1
-
隶属关系:
- Penza State University
- 期: 卷 25, 编号 1 (2023)
- 页面: 565-577
- 栏目: Mathematics
- ##submission.dateSubmitted##: 15.12.2025
- ##submission.dateAccepted##: 15.12.2025
- ##submission.datePublished##: 24.12.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/358136
- DOI: https://doi.org/10.15507/2079-6900.25.202301.565-577
- ID: 358136
如何引用文章
全文:
详细
The aim of this work is to construct direct and iterative numerical methods for solving functional equations with hereditary components. Such equations are a convenient tool for modeling dynamical systems. In particular, they are used in population models structured by age with a finite life span. Models based on integro-differential and integral equations with various kinds of delay arguments are considered. For nonlinear equations, the operators are linearized according to the modified Newton-Kantorovich scheme. Direct quadrature and simple iteration methods are used to discretize linear equations. These methods are constructed in the paper: an iterative method for solving a nonlinear integro-differential equation on the semiaxis (-∞,0)
作者简介
Aleksandr Tynda
Penza State University
编辑信件的主要联系方式.
Email: tyndaan@mail.ru
ORCID iD: 0000-0001-6023-9847
Ph. D. (Phys.-Math.), Associate Professor, Department of Higher and Applied Mathematics
俄罗斯联邦, 40 Krasnaya St., Penza 440026, Russia参考
- H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge: Cambridge University Press, 2004, 612 p.
- F. Caliò, E. Marchetti, R. Pavani, "About the deficient spline collocation method for particular differential and integral equations with delay", Rend. Sem. Mat. Univ. Pol. Torino, 61 (2003), 287–300.
- A. Cardone, I. D. Prete, C. Nitsch, "Gaussian direct quadrature methods for double delay Volterra integral equations", Electronic Transactions on Numerical Analysis., 35 (2009), 201–216.
- E.Messina, E. Russo, A. Vecchio, "A convolution test equation for double delay integral equations", Journal of Computational and Applied Mathematics, 228:2 (2009), 589–599.
- J. M. Gushing, Volterra Integrodifferential Equations in Population Dynamics. In: Mathematics of Biology., 80, Berlin: Springer, 2010.
- L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon, 2nd ed., 1982, 589 p.
- A. F. Verlan, V. S. Sizikov, Integral equations: methods, algorithms, programms, Kiev: Naukova Dumka Publ., 1986 (in Russ).
- Z. Popović, "Basic mathematical models in economic-ecological control", Facta Universitatis. Economics and Organization, 5:3 (2008), 251–262.
补充文件


