On the method of solving nonlinear Fredholm integral equation of the second kind with piecewise-smooth kernels
- Autores: Germider O.V.1, Popov V.N.2
-
Afiliações:
- Northern (Arctic) Federal University named after M.V.Lomonosov
- Northern (Arctic) Federal University named after M.V. Lomonosov
- Edição: Volume 27, Nº 1 (2025)
- Páginas: 11-24
- Seção: Mathematics
- ##submission.dateSubmitted##: 27.06.2025
- ##submission.dateAccepted##: 27.06.2025
- ##submission.datePublished##: 26.02.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/298070
- ID: 298070
Citar
Texto integral
Resumo
Sobre autores
Oksana Germider
Northern (Arctic) Federal University named after M.V.Lomonosov
Autor responsável pela correspondência
Email: o.germider@narfu.ru
ORCID ID: 0000-0002-2112-805X
Vasily Popov
Northern (Arctic) Federal University named after M.V. Lomonosov
Email: v.popov@narfu.ru
ORCID ID: 0000-0003-0803-4419
Bibliografia
- A. M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Springer-Verlag, Beijing, 2011 doi: 10.1007/978-3-642-21449-3, 658 p.
- N. Karamollahi, M. Heydari, Gh. B. Loghmani, "Approximate solution of nonlinear Fredholm integral equations of the second kind using a class of Hermite interpolation polynomials", Mathematics and Computers in Simulation, 187 (2021), 414–432. doi: 10.1016/j.matcom.2021.03.015.
- S. Amiri, M. Hajipour, D. Baleanu, "On accurate solution of the Fredholm integral equations of the second kind", Applied Numerical Mathematics, 150 (2020), 478–490. doi: 10.1016/j.apnum.2019.10.017.
- Y. Ordokhani, M. Razzaghi, "Solution of nonlinear Volterra-Fredholm–Hammerstein integral equations via a collocation method and ationalized Haar functions", Applied Mathematics Letters, 21 (2008), 4–9. doi: 10.1016/j.aml.2007.02.007.
- S. Islam, I. Aziz, A. Al-Fhaid, "An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders", Journal of Computational and Applied Mathematics, 260 (2014), 449–469.
- S. Bazm, A. Hosseini, J.S. Azevedo, F. Pahlevani, "Existence, uniqueness, and numerical approximation of solutions of a nonlinear functional integral equation", Journal of Computational and Applied Mathematics, 439 (2024), 115602. doi: 10.1016/j.cam.2023.115602.
- A. N. Tynda 4, D. N. Sidorov 5, Ildar R. Muftahov, "Numerical method for systems of nonlinear Volterra integral equations of the first kind with discontinuous kernels", Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 20:1 (2018), 55–63. doi: 10.15507/2079-6900.20.201801.55-63 (In Russ.).
- H.T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Publications, New York, 1962, 566 p.
- N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobel'kov, Chislennyye metody, Laboratoriya znaniy, M., 2020 (In Russ.), 636 p.
- O.V. Germider, V.N. Popov, "Estimating the Lebesgue constant for the Chebyshev distribution of nodes", Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 25:4 (2023), 242–254. doi: 10.15507/2079-6900.25.202304.242-254 (In Russ.).
- R. Bellman, R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, Elsevier, New York, 1969, 62 p.
- S. Bazm, P. Limaand, S. Nemati, "Analysis of the Euler and trapezoidal discretization methods for the numerical solution of nonlinear functional Volterra integral equations of Urysohn type, Journal of Computational and Applied Mathematics, 398 (2021), 113628. doi: 10.1016/j.cam.2021.113628.
- J. Mason, D. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, New York, 2002 doi: 10.1201/9781420036114, 360 p.
- S. Liu, G. Trenkler, "Hadamard, Khatri-Rao, Kronecker and other matrix products", International Journal of Information and Systems Sciences, 4:1 (2008), 160–177.
Arquivos suplementares



