On the method of solving nonlinear Fredholm integral equation of the second kind with piecewise-smooth kernels

Cover Page

Cite item

Full Text

Abstract

The work is devoted to the development of iterative methods for solving nonlinear Fredholm integral equations of the second kind with piecewise-smooth kernels. A new approach to constructing their solutions is proposed which combines the method of successive approximations with polynomial interpolations of functions on the segment $[-1,\,1]$. In this case, the original integral equation is reduced to a Volterra-type equation where the unknown function is defined on the segment mentioned. The free term of the equation is chosen as the initial approximation. At each iteration of  successive approximations method, the kernel of the integral equation is represented as a partial sum of a series in Chebyshev polynomials orthogonal on the segment $[-1,\,1]$. The coefficients in this expansion are found using the orthogonality of vectors formed by the values of these polynomials at the zeros of the polynomial whose degree is equal to the number of unknown coefficients. An approximation of the solution is made by interpolation of the obtained values of the solution at the Chebyshev nodes at each iteration. The work also constructs a solution to an integral equation whose free term has a discontinuity point of the first kind. The results of the computational experiments are presented, which demonstrate the effectiveness of the proposed approach.

About the authors

Oksana V. Germider

Northern (Arctic) Federal University named after M.V.Lomonosov

Author for correspondence.
Email: o.germider@narfu.ru
ORCID iD: 0000-0002-2112-805X

Ph.D. in Phys. and Math., associate Professor of the Department of Engineering Structures, Architecture and Graphics
Russian Federation, Severnaya Dvina Emb. 17, Arkhangelsk, 163002, Russia

Vasily N. Popov

Northern (Arctic) Federal University named after M.V. Lomonosov

Email: v.popov@narfu.ru
ORCID iD: 0000-0003-0803-4419

 D.Sc. in Phys. and Math., Professor of the Department of Higher and Applied Mathematics
Russian Federation, Severnaya Dvina Emb. 17, Arkhangelsk, 163002, Russia

References

  1. A. M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Springer-Verlag, Beijing, 2011 doi: 10.1007/978-3-642-21449-3, 658 p.
  2. N. Karamollahi, M. Heydari, Gh. B. Loghmani, "Approximate solution of nonlinear Fredholm integral equations of the second kind using a class of Hermite interpolation polynomials", Mathematics and Computers in Simulation, 187 (2021), 414–432. doi: 10.1016/j.matcom.2021.03.015.
  3. S. Amiri, M. Hajipour, D. Baleanu, "On accurate solution of the Fredholm integral equations of the second kind", Applied Numerical Mathematics, 150 (2020), 478–490. doi: 10.1016/j.apnum.2019.10.017.
  4. Y. Ordokhani, M. Razzaghi, "Solution of nonlinear Volterra-Fredholm–Hammerstein integral equations via a collocation method and ationalized Haar functions", Applied Mathematics Letters, 21 (2008), 4–9. doi: 10.1016/j.aml.2007.02.007.
  5. S. Islam, I. Aziz, A. Al-Fhaid, "An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders", Journal of Computational and Applied Mathematics, 260 (2014), 449–469.
  6. S. Bazm, A. Hosseini, J.S. Azevedo, F. Pahlevani, "Existence, uniqueness, and numerical approximation of solutions of a nonlinear functional integral equation", Journal of Computational and Applied Mathematics, 439 (2024), 115602. doi: 10.1016/j.cam.2023.115602.
  7. A. N. Tynda 4, D. N. Sidorov 5, Ildar R. Muftahov, "Numerical method for systems of nonlinear Volterra integral equations of the first kind with discontinuous kernels", Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 20:1 (2018), 55–63. doi: 10.15507/2079-6900.20.201801.55-63 (In Russ.).
  8. H.T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Publications, New York, 1962, 566 p.
  9. N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobel'kov, Chislennyye metody, Laboratoriya znaniy, M., 2020 (In Russ.), 636 p.
  10. O.V. Germider, V.N. Popov, "Estimating the Lebesgue constant for the Chebyshev distribution of nodes", Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 25:4 (2023), 242–254. doi: 10.15507/2079-6900.25.202304.242-254 (In Russ.).
  11. R. Bellman, R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, Elsevier, New York, 1969, 62 p.
  12. S. Bazm, P. Limaand, S. Nemati, "Analysis of the Euler and trapezoidal discretization methods for the numerical solution of nonlinear functional Volterra integral equations of Urysohn type, Journal of Computational and Applied Mathematics, 398 (2021), 113628. doi: 10.1016/j.cam.2021.113628.
  13. J. Mason, D. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, New York, 2002 doi: 10.1201/9781420036114, 360 p.
  14. S. Liu, G. Trenkler, "Hadamard, Khatri-Rao, Kronecker and other matrix products", International Journal of Information and Systems Sciences, 4:1 (2008), 160–177.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Germider O.V., Popov V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).