On the Similarity of Upper Triangular Nilpotent Matrices of the $4$th and the $5$th Orders to a Generalized Jordan Block over the Ring of Integers

Cover Page

Cite item

Full Text

Abstract

In this paper conditions for similarity of an upper triangular nilpotent matrix and a generalized Jordan block (i.,e. a matrix where only the elements of the first superdiagonal are non-zero) are considered. The problem is solved over the ring of integers. Necessary and sufficient conditions for similarity to a generalized Jordan block are obtained for the following classes of matrices: the fourth-order matrices of rank $3$ with nonzero elements of the first superdiagonal; the fifth-order matrices of rank $4$ and some additional restrictions on the elements of the first superdiagonal. These conditions are formulated in simple terms of divisibility and greatest common divisors of matrix elements. It is proved that if the first and last elements of the first superdiagonal are coprime, and the product of the remaining elements of this superdiagonal is equal to $1,$ then this matrix is similar to a generalized Jordan block. To obtain the similarity criterion, the following statement is used: if two nilpotent upper triangular matrices of order $n$ and rank $n - 1$ are similar over the ring of integers, then among the transforming matrices there is a triangular matrix. This statement reduces the problem of recognizing similarity to solving a system of linear equations in integers. The main tool for obtaining the results in the article is the criterion of consistency of a system of linear equations over the ring of integers.

About the authors

Sergey V. Sidorov

National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: sesidorov@yandex.ru
ORCID iD: 0000-0003-2883-6427

Ph. D. in Phys. and Math., Associate Professor, Department of Algebra, Geometry and Discrete Mathematics
Russian Federation, 23 Gagarina Av., Nizhny Novgorod 603022, Russia

German V. Utkin

National Research Lobachevsky State University of Nizhny Novgorod

Email: german.utkingu@gmail.com
ORCID iD: 0000-0003-4794-2591

Laboratory Researcher, Artificial Intelligence Research Center
Russian Federation, 23 Gagarina Av., Nizhny Novgorod 603022, Russia

References

  1. F. R. Gantmacher, The Theory of Matrices, M. Nauka, 1988 (In Russ.), 552 p.
  2. S. V. Sidorov, E. E. Chilina, "On non-hyperbolic algebraic automorphisms of a two-dimensional torus", Zhurnal SVMO, 23:3 (2021), 295–307. doi: 10.15507/2079.6900.23.202103.295-307 (In Russ.).
  3. V. V. Gorbatsevich, "Compact solvmanifolds of dimension at most ≤ 4'', Sib. Math. J, 50:2 (2009), 239–252.
  4. L. M. Lerman, K. N. Trifonov, "Symplectic partially hyperbolic automorphisms of 6-torus", Journal of Geometry and Physics, 195 (2024), 105038. doi: 10.1016/j.geomphys.2023.105038.
  5. H. Appelgate, H. Onishi, "The Similarity Problem for 3 × 3 Integer Matrices", Linear Algebra Appl., 42:2 (1982), 159–174. doi: 10.2307/2043695.
  6. S. V. Sidorov, "On similarity of matrices of third order over the ring of integers with reducible characteristic polynomial", Vestnik Nizhegorodsk. Univ., 2009, no. 1, 119–127 (In Russ.).
  7. S. V. Sidorov, Selection of effectively solvable classes in the problem of similarity of matrices over the ring of integers, PhD Dissertation, Nizhny Novgorod, 2015 (In Russ.).
  8. V. N. Shevchenko, S. V. Sidorov, "On the similarity of second-order matrices over the ring of integers", Russian Math. (Iz. VUZ), 50:4 (2006), 56–63 (In Russ.).
  9. M. Newman, Integral matrices, Academic Press, New York, 1972, 223 p.
  10. S. V. Sidorov, "Similarity of matrices with integer spectra over the ring of integers", Russian Math. (Iz. VUZ), 55:3 (2011), 77–84 (In Russ.).
  11. S. V. Sidorov, G. V. Utkin, "On the Similarity over the Ring of Integers of Certain Nilpotent Matrices of Maximal Rank", Zhurnal SVMO, 25:4 (2023), 284–298. doi: 10.15507/2079-6900.25.202304.284-298 (In Russ.).
  12. G. V. Utkin, "Similarity criterion over the ring of integers for some nilpotent matrices of the fifth order", Mathematical modeling and supercomputer technologies: Proceedings of the XXIII International Conference, Nizhny Novgorod, November 13–16, 2023, 154–157 (In Russ.).
  13. S. V. Sidorov, "On the similarity of certain integer matrices with single eigenvalue over the ring of integers", Math Notes, 105 (2019), 756–762. doi: 10.1134/S0001434619050122 (In Russ.).
  14. D. Husert, Similarity of integer matrices, PhD Thesis, University of Paderborn, 2017, 147 p.
  15. A. Schrijver, Theory of linear and integer programming, Wiley, 1998, 464 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Sidorov S.V., Utkin G.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).