On the Similarity of Upper Triangular Nilpotent Matrices of the $4$th and the $5$th Orders to a Generalized Jordan Block over the Ring of Integers
- Autores: Sidorov S.V.1, Utkin G.V.1
-
Afiliações:
- National Research Lobachevsky State University of Nizhny Novgorod
- Edição: Volume 27, Nº 1 (2025)
- Páginas: 69-80
- Seção: Mathematics
- ##submission.dateSubmitted##: 27.06.2025
- ##submission.dateAccepted##: 30.06.2025
- ##submission.datePublished##: 26.01.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/298083
- ID: 298083
Citar
Texto integral
Resumo
Sobre autores
Sergey Sidorov
National Research Lobachevsky State University of Nizhny Novgorod
Autor responsável pela correspondência
Email: sesidorov@yandex.ru
ORCID ID: 0000-0003-2883-6427
German Utkin
National Research Lobachevsky State University of Nizhny Novgorod
Email: german.utkingu@gmail.com
ORCID ID: 0000-0003-4794-2591
Bibliografia
- F. R. Gantmacher, The Theory of Matrices, M. Nauka, 1988 (In Russ.), 552 p.
- S. V. Sidorov, E. E. Chilina, "On non-hyperbolic algebraic automorphisms of a two-dimensional torus", Zhurnal SVMO, 23:3 (2021), 295–307. doi: 10.15507/2079.6900.23.202103.295-307 (In Russ.).
- V. V. Gorbatsevich, "Compact solvmanifolds of dimension at most ≤ 4'', Sib. Math. J, 50:2 (2009), 239–252.
- L. M. Lerman, K. N. Trifonov, "Symplectic partially hyperbolic automorphisms of 6-torus", Journal of Geometry and Physics, 195 (2024), 105038. doi: 10.1016/j.geomphys.2023.105038.
- H. Appelgate, H. Onishi, "The Similarity Problem for 3 × 3 Integer Matrices", Linear Algebra Appl., 42:2 (1982), 159–174. doi: 10.2307/2043695.
- S. V. Sidorov, "On similarity of matrices of third order over the ring of integers with reducible characteristic polynomial", Vestnik Nizhegorodsk. Univ., 2009, no. 1, 119–127 (In Russ.).
- S. V. Sidorov, Selection of effectively solvable classes in the problem of similarity of matrices over the ring of integers, PhD Dissertation, Nizhny Novgorod, 2015 (In Russ.).
- V. N. Shevchenko, S. V. Sidorov, "On the similarity of second-order matrices over the ring of integers", Russian Math. (Iz. VUZ), 50:4 (2006), 56–63 (In Russ.).
- M. Newman, Integral matrices, Academic Press, New York, 1972, 223 p.
- S. V. Sidorov, "Similarity of matrices with integer spectra over the ring of integers", Russian Math. (Iz. VUZ), 55:3 (2011), 77–84 (In Russ.).
- S. V. Sidorov, G. V. Utkin, "On the Similarity over the Ring of Integers of Certain Nilpotent Matrices of Maximal Rank", Zhurnal SVMO, 25:4 (2023), 284–298. doi: 10.15507/2079-6900.25.202304.284-298 (In Russ.).
- G. V. Utkin, "Similarity criterion over the ring of integers for some nilpotent matrices of the fifth order", Mathematical modeling and supercomputer technologies: Proceedings of the XXIII International Conference, Nizhny Novgorod, November 13–16, 2023, 154–157 (In Russ.).
- S. V. Sidorov, "On the similarity of certain integer matrices with single eigenvalue over the ring of integers", Math Notes, 105 (2019), 756–762. doi: 10.1134/S0001434619050122 (In Russ.).
- D. Husert, Similarity of integer matrices, PhD Thesis, University of Paderborn, 2017, 147 p.
- A. Schrijver, Theory of linear and integer programming, Wiley, 1998, 464 p.
Arquivos suplementares



