Quantum machine learning methods for intrusion detection in software-defined networks
- Authors: Antonov I.A.1, Kurochkin I.I.2
-
Affiliations:
- National University of Science and Technology MISIS
- Institute for Information Transmission Problems of RAS
- Issue: Vol 16, No 3 (2025)
- Pages: 3-22
- Section: Articles
- URL: https://journals.rcsi.science/2079-3316/article/view/309575
- DOI: https://doi.org/10.25209/2079-3316-2025-16-3-3-22
- ID: 309575
Cite item
Full Text
Abstract
About the authors
Il'ya Andreevich Antonov
National University of Science and Technology MISIS
Email: m1908142@edu.misis.ru
Il'ya Il'ich Kurochkin
Institute for Information Transmission Problems of RAS
Email: kurochkin@iitp.ru
References
- Kukliansky A., Orescanin M., Bollmann C., Huffmire T. „Network anomaly detection using quantum neual networks on noisy quantum computers“, IEEE Transactions on Quantum Engineering, 5 (2024), pp. 1–11.
- Кажемский М. А., Шелухин О. И. «Многоклассовая классификация сетевых атак на информационные ресурсы методами машинного обучения», Труды учебных заведений связи, 5:1 (2019), с. 107–115.
- Zeguendry A., Jarir Z., Quafafou M. „Quantum machine learning: A review and case studies“, Entropy, 25:2 (2023), 287, 41 pp.
- Volkov S. S., Kurochkin I. I. „Extraction of traffic features in software-defined networks using an SDN-controller“, Conference: 9th International Conference "Distributed Computing and Grid Technologies in Science and Education" (Dubna, Russia, July 5–9, 2021), CEUR Workshop Proceedings, vol. 3041, 2021, pp. 553–557.
- Фёдоров Н. К. «Программно-конфигурируемые сети. Проблемы при переходе к сетям ПКС», StudNet, 5:4 (2022), с. 3137–3148.
- Forbacha S. C., Kinteh M. K., Hamza E. M. „Enhanced attacks detection and mitigation in software defined networks“, American Journal of Computing and Engineering, 7:3 (2024), pp. 40–80.
- Elsayed M. S., Le-Khac N. A., Jurcut A. D. „InSDN: A novel SDN intrusion dataset“, IEEE Access, 8 (2020), pp. 165263–165284.
- Wu Z., Wang J., Hu L., Zhang Zh., Wu H. „A network intrusion detection method based on semantic Re-encoding and deep learning“, Journal of Network and Computer Applications, 164 (2020), 102688.
- Yoon C., Lee S., Kang H., Park T., Shin S., Yegneswaran V., Porras Ph., Gu G. „Flow wars: Systemizing the attack surface and defenses in software-defined networks“, IEEE/ACM Transactions on Networking, 25:6 (2017), pp. 3514–3530.
- Vedral V., Plenio M. B. „Basics of quantum computation“, Progress in Quantum Electronics, 22:1 (1998), pp. 1–39.
- Yang Z., Zolanvari M., Jain R. „A survey of important issues in quantum computing and communications“, IEEE Communications Surveys & Tutorials, 25:2 (2023), pp. 1059–1094.
- Торгаев С. Н., Шульга И. Д., Юрченко Е. А., Громов М. Л. Основы квантовых вычислений, STT, Томск, 2020, ISBN 978-5-93629-656-7, 88 с.
- Bacciagaluppi G. „The role of decoherence in quantum mechanics“, The Stanford Encyclopedia of Philosophy, substantive revision Thu Jan 23, 2025, eds. Edward N. Zalta, Uri Nodelman, Metaphysics Research Lab, Stanford University, 2025 URL https://plato.stanford.edu/entries/qm-decoherence/.
- Luo J., Zhao P., Miao Zh., Zhao J. „A comprehensive study of bug fixes in quantum programs“, 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER (Honolulu, HI, USA, 15–18 March 2022), IEEE, 2022, ISBN 978-1-6654-3786-8, pp. 1239–1246.
- Shor P. W. „Algorithms for quantum computation: discrete logarithms and factoring“, Proceedings 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, USA, 20–22 November 1994), IEEE, 1994, ISBN 0-8186-6580-7, pp. 124–134.
- Shor P. W. „Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer“, SIAM Journal on Computing, 26:5, pp. 1484–1509.
- Grover L. K. „A fast quantum mechanical algorithm for database search“, STOC'96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (Philadelphia, Pennsylvania, USA, 22–24 May 1996), 1996, ISBN 978-0-89791-785-8, pp. 212–219.
- Tychola K. A., Kalampokas T., Papakostas G. A. „Quantum machine learning — an overview“, Electronics, 12:11 (2023), 2379, 21 pp.
- Kalinin M., Krundyshev V. „Security intrusion detection using quantum machine learning techniques“, Journal of Computer Virology and Hacking Techniques, 19:1 (2023), pp. 125–136.
- Zardini E., Blanzieri E., Pastorello D. „A quantum k-nearest neighbors algorithm based on the Euclidean distance estimation“, Quantum Machine Intelligence, 6:1 (2024), 23, 22 pp.
- Basheer A., Afham A., Goyal S. K. Quantum $k$-nearest neighbors algorithm, 2021, 21 pp.
- Anguita D., Ridella S., Rivieccio F., Zunino R. „Quantum optimization for training support vector machines“, Neural Networks, 16:5–6 (2003), pp. 763–770.
- Harrow A. W., Hassidim A., Lloyd S. „Quantum algorithm for linear systems of equations“, Physical review letters, 103:15 (2009), 150502.
- Yang J., Awan A. J., Vall-Llosera G. Support vector machines on noisy intermediate scale quantum computers, 2019, 12 pp.
- Meedinti G. N., Srirekha K. S., Delhibabu R. A quantum convolutional neural network approach for object detection and classification, 2023, 16 pp.
- Chawla N. V., Bowyer K. W., Hall L. O., Kegelmeyer W. P. „SMOTE: Synthetic minority over-sampling technique“, Journal of Artificial Intelligence Research, 16:1 (2002), pp. 321–357.
- Volkov S. S., Kurochkin I. I. „Network attacks classification using Long Short-term memory based neural networks in Software-Defined Networks“, Procedia Computer Science, 178 (2020), pp. 394–403.
Supplementary files
