Minimax improvement method for inhomogeneous discrete systems

Cover Page

Cite item

Full Text

Abstract

A class of two-level discrete inhomogeneous systems (DNS) is considered for the case when all homogeneous subsystems of the lower level are not only connected by a common functionality, but also have their own goals. Similar systems are widely used in practice (economics, ecology), and also arise in the process of numerically solving optimization problems when discretizing continuous control systems. A second-order control improvement method is proposed, for the derivation of which a generalization of sufficient optimality conditions by V. F. Krotov. Illustrative examples are given.

About the authors

Irina Viktorovna Rasina

Ailamazyan Program Systems Institute of RAS; Federal Research Center "Computer Science and Control" of RAS

Author for correspondence.
Email: irinarasina@gmail.com
ORCID iD: 0000-0001-8939-2968

Alexander Olegovich Blinov

Russian State Social University

Email: aleblinov@yandex.ru
ORCID iD: 0000-0002-5713-2325

References

  1. Theory of Systems with Variable Structures, ред. С. В. Емельянов , Наука, М., 1970, 592 с. (in Russian).
  2. Гурман В. И.. «Theory of optimum discrete processes», Autom. Remote Control, 34:7 (1973), с. 1082–1087 (in Russian).
  3. Васильев С. Н.. «Theory and application of logic-based controlled systems», Proceedings of the International Conference Identification and Control Problems, SICPRO'03 (Москва, 29–31 января 2003), Институт проблем управления им. В.А. Трапезникова РАН, М., 2003, с. 23–52 (in Russian).
  4. Бортаковский А. С.. «Sufficient optimality conditions for control of deterministic logical-dynamic systems», Informatika, Ser. Computer Aided Design, ВИМИ, М., 1992, с. 72–79 (in Russian).
  5. Миллер Б. М., Рубинович Е. Я.. Optimization of the Dynamic Systems with Pulse Controls, Наука, М., 2005, ISBN 978-5-9710-5725-3, 429 с. (in Russian).
  6. Lygeros J.. Lecture Notes on Hybrid Systems, University of Cambridge, Cambridge, 2003, 82 pp.
  7. Бурков В. Н.. Fundamentals of the mathematical theory of active systems, Наука, М., 1977, 255 с. (in Russian).
  8. Бурков В. Н., Новиков Д. А.. «Active systems theory (history of development)», Пробл. управл, 2009, №3.1, с. 29–35 (in Russian).
  9. Кротов В. Ф., Гурман В. И.. Methods and Problems of Optimal Control, Наука, М., 1973, 448 с. (in Russian).
  10. Кротов В. Ф.. «Sufficient conditions for the optimality of discrete control systems», ДАН СССР, 172:1 (1967), с. 18–21 (in Russian).
  11. Расина И. В., Гусева И. С.. «Control improvement method for non-homogeneous discretesystems with intermediate criterions», Программные системы: теория и приложения, 9:2 (2018), с. 23–38 (in Russian).
  12. Гурман В. И., Расина И. В.. «On practical applications of conditions sufficient for a strong relative minimum», Autom. Remote Control, 40:10 (1980), с. 1410–1415.
  13. Rasina I., Danilenko O.. “Second-Order Improvement Method for Discrete-Continuous Systems with Intermediate Criteria”, IFAC-Papers Online, 17th IFAC Workshop on Control Applications of Optimization (October 15–19, 2018, Yekaterinburg, Russia), 2018, pp. 184–188.
  14. Расина И. В., Фесько О. В.. «Sufficient relative minimum conditions for discrete-continuous control systems», Program Systems: Theory and Applications, 11:2 (2020), с. 47–59.
  15. Гурман В. И.,Трушкова Е. А.. «Approximate methods of control processes optimization», Program Systems: Theory and Applications, 4:4 (2010), с. 85–104 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).