Improving quality of video stream from the unmanned aerial vehicle technical vision system

Cover Page

Cite item

Full Text

Abstract

The study contains the results of work on the software and hardware complex to improve the quality of video data obtained from unmanned aerial vehicles. Including the tasks of independent video-flow images deconvolution (motion blur removal) and stabilization of the video stream using machine learning and artificial intelligence methods. Analytical and practical results are presented that allowed to choose solutions for processing data from UAVs in real time.

About the authors

Vitaly Petrovich Fralenko

Ailamazyan Program Systems Institute of RAS

Author for correspondence.
Email: alarmod@pereslavl.ru
ORCID iD: 0000-0003-0123-3773
PhD, Leading Researcher at RCMS Ailamazyan Program Systems Institute. The field of scientific interests: intellectual data analysis and images recognition, artificial intelligence and decision making, parallel-conveyor computing, network security, diagnosis of complex technical systems, graphic interfaces.

References

  1. Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu. “Improving image restoration by revisiting global information aggregation”, ECCV 2022: Computer Vision – ECCV 2022 (October 23–27, 2022, Tel Aviv, Israel), Lecture Notes in Computer Science, vol. 13678, Springer, Cham, 2022, pp. 330–351.
  2. Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, Yinxiao Li. “MAXIM: multi-axis MLP for image processing”, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, 34 pp.
  3. Lei Sun, Christos Sakaridis, Jingyun Liang, Qi Jiang, Kailun Yang, Peng Sun, Yaozu Ye, Kaiwei Wang, Luc Van Gool. “Event-based fusion for motion deblurring with cross-modal attention”, ECCV 2022: Computer Vision – ECCV 2022 (October 23–27, 2022, Tel Aviv, Israel), Lecture Notes in Computer Science, vol. 13678, Springer, Cham, pp. 412–428, 2023, 17 pp.
  4. Dasong Li, Yi Zhang, Ka Chun Cheung, Xiaogang Wang, Hongwei Qin, Hongsheng Li. “Learning degradation representations for image deblurring”, Computer Vision – ECCV 2022, ECCV 2022, Lecture Notes in Computer Science, eds. Avidan S., Brostow G. Ciss.e M. Farinella G.M. Hassner T., 2022, 18 pp.
  5. Chong Mou, Qian Wang, Jian Zhang. “Deep generalized unfolding networks for image restoration”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 17399–17410, 12 pp.
  6. Chen L., Chu X., Zhang X., Sun J.. “Simple baselines for image restoration”, Computer Vision – ECCV 2022, ECCV 2022, Lecture Notes in Computer Science, eds. Avidan S., Brostow G., Ciss.e M., Farinella G.M., Hassner T., 2022, 21 pp.
  7. Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, Chia-Wen Lin. “Stripformer: strip transformer for fast image deblurring.”, Computer Vision – ECCV 2022, ECCV 2022, Lecture Notes in Computer Science, vol. 13679, eds. Avidan, S., Brostow, G., Ciss.e, M., Farinella, G.M., Hassner, T., 2022, 17 pp.
  8. Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, Houqiang Li. “Uformer: a general U-shaped transformer for image restoration”, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, 17 pp.
  9. Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer, Peter Vajda. Visual transformers: token-based image representation and processing for computer vision, 2020, 12 pp.
  10. Thakur A., Papakipos Z., Clauss C., Hollinger C., Andolina I. M., Boivin V., enarche-ahn, freol35241, Lowe B., Schoentgen M., Bouckenooghe R.. “abhiTronix/vidgear: VidGear v0.2.6”, 2022 URL https://zenodo.org/record/6926196.
  11. Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu Chuang, Jia-Bin Huang. “Hybrid neural fusion for full-frame video stabilization”, Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 2299–2308.
  12. Shuaicheng Liu, Ping Tan, Lu Yuan, Jian Sun, Bing Zeng. “MeshFlow: minimum latency online video stabilization”, ECCV 2016: Computer Vision – ECCV 2016 (October 11-14, 2016, Amsterdam, The Netherlands), Lecture Notes in Computer Science, vol. 9910, 2016, pp. 800–815.
  13. Grundmann M., Kwatra V., Essa I.. “Auto-directed video stabilization with robust L1 optimal camera paths”, CVPR '11: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (20–25 June 2011, Colorado Springs, CO, USA), IEEE Computer Society, 2011, ISBN 978-1-4577-0394-2, pp. 225–232.
  14. Grundmann M., Kwatra V., Essa I.. “Auto-Directed Video Stabilization with Robust L1 Optimal Camera Paths”, CVPR '11: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (20–25 June 2011, Colorado Springs, CO, USA), IEEE Computer Society, 2011, pp. 225–232.
  15. Yufei Xu, Jing Zhang, Stephen J. Maybank, Dacheng Tao. “DUT: learning video stabilization by simply watching unstable videos”, IEEE Transactions on Image Processing, 31 (2022), pp. 4306–4320.
  16. Jinsoo Choi, In So Kweon. “Deep iterative frame interpolation for full-frame video stabilization”, ACM Transactions on Graphics, 39:1 (2019), 4, 4, 9 pp.
  17. Wang M., Yang G. -Y., Lin J. -K., Zhang S. -H., Shamir A., Lu S. -P., Hu S. -M.. “Deep online video stabilization with multi-grid warping transformation learning”, IEEE Transactions on Image Processing, 28:5 (2019), pp. 2283–2292.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).