Reputation-based System for Expert Workforce Support for China-Russia Partnership

Cover Page

Cite item

Full Text

Abstract

This article presents the concept of a reputation-based organizational and technical system designed to facilitate workforce interaction between the Russian Federation and the People's Republic of China in support of investment, industrial, and innovation-technology cooperation. The article addresses issues related to workforce provision, including insufficient data structuring, lack of mechanisms for validating competencies, and information noise, which render current platforms unsuitable for finding highly specialized experts. The proposed system is based on the use of modern technologies such as artificial intelligence, machine learning, semantic analysis, and manual data curation, along with the integration of state accreditation and verification mechanisms. It aims to eliminate linguistic, cultural, and informational barriers between the labor markets of Russia and China, while providing a unified tool for identifying top-tier experts with unique competencies, essential for executing complex international projects.

About the authors

I. F. Kuzminov

National Research University Higher School of Economics

Email: ikuzminov@hse.ru
Candidate of Sciences (PhD) in Economic, Social, Political and Recreational Geography, Director, «Institute for Public Administration and Governance» 9-11 Myasnitskaya Str., Moscow, 101000

V. A. Ignatova

MIREA – Russian Technological University

Email: vignatovaa@yandex.ru
Lecturer 78 Vernadsky Avenue, Moscow, 119454

References

  1. Panova E.A. Vliyanie tsifrovizatsii na korporativnuyu kadrovuyu politiku [The impact of digitalization on corporate HR policy]. (In Russ).
  2. Asriants K.G., Magomedov O.A., Asriants D.V. Tsifrovye tekhnologii v protsesse realizatsii kadrovoy politiki. Prikladnye ekonomicheskie issledovaniya. 2023; 2: 75–79. Available from: https://cyberleninka.ru/article/n/tsifrovye-tehnologii-v-protsesse-realizatsii-kadrovoy-politiki [Accessed: 24.12.2024].
  3. Yamashita M., Tran T., Lee D. Fake resume attacks: Data poisoning on online job platforms. Proceedings of the ACM on Web Conference. 2024; 1734–1745.
  4. Nocker M., Sena V. Big data and human resources management: The rise of talent analytics. Social Sciences. 2019; 8(10): 273.
  5. Ayoobi N., Shahriar S., Mukherjee A. The looming threat of fake and LLM-generated LinkedIn profiles: Challenges and opportunities for detection and prevention. In: Proceedings of the 34th ACM Conference on Hypertext and Social Media; 2023; 1–10.
  6. Rathee R., Bhuntel R. Benefits, challenges, and impact of E-recruitment. VSRD International Journal of Business and Management Research. 2017; 7: 32–38.
  7. Maree M., Kmail A.B., Belkhatir M. Analysis and shortcomings of e-recruitment systems: Towards a semantics-based approach addressing knowledge incompleteness and limited domain coverage. Journal of Information Science. 2019; 45(6): 713–735.
  8. McGinty N.A., Lylova E.V. Transformation of the HR management in modern organizations. In: Proceedings of the 1st International Conference on Emerging Trends and Challenges in the Management Theory and Practice (ETCMTP 2019); 2020. 18–21.
  9. Tennant J.P. Web of Science and Scopus are not global databases of knowledge. European Science Editing. 2020; 46: e51987.
  10. Decorte J.J., Van Hautte J., Develder C., Demeester T. On the biased assessment of expert finding systems. arXiv preprint arXiv:2410.05018. 2024.
  11. Ponomarev N.M., Ivanova N.I. Nauchno-tekhnicheskoe sotrudnichestvo Rossiyskoy Federatsii i Kitaya [Scientific and technical cooperation of the Russian Federation and China]. Rossiyskiy vneshneekonomicheskiy vestnik. 2024; 5: 86–92. (In Russ.)
  12. Moseychuk M.A., Abduhalilov O.S., Petrochenko E.B. Protsessy tsifrovizatsii ekonomiki v Kitae i Rossii: Vliyanie na rynok truda [Processes of digitalization of the economy in China and Russia: Impact on the labor market]. 2023; 34.
  13. Yumin L., Skurko E.V. Ot "yazykovogo bar'era" k "yazykovomu mostu": Osnovy pravovoy politiki razvitiya mezhdunarodnogo sotrudnichestva v sfere nauki, kul'tury, obrazovaniya Kitaya i Rossii [From "language barrier" to "language bridge": Fundamentals of the legal policy for developing international cooperation in science, culture, and education between China and Russia]. Pravovaya politika i pravovaya zhizn'. 2020; 3: 28–35. (In Russ.)
  14. Smith H.A., McKeen J.D. Developments in practice XXX: Master data management: Salvation or snake oil? Communications of the Association for Information Systems. 2008; 23(1): 4.
  15. Bhadani A.K., Jothimani D. Big data: Challenges, opportunities, and realities. In: Effective Big Data Management and Opportunities for Implementation; 2016. 1–24.
  16. Venugopalan S., Narayanaswamy A., Yang S., Geraschenko A., Lipnick S., Makhortova N., Berndl M. It's easy to fool yourself: Case studies on identifying bias and confounding in biomedical datasets. arXiv preprint arXiv:1912.07661. 2019.
  17. Gándara D., Anahideh H., Ison M.P., Picchiarini L. Inside the black box: Detecting and mitigating algorithmic bias across racialized groups in college student-success prediction. AERA Open. 2024; 10: 23328584241258741.
  18. Bhardwaj E., Gujral H., Wu S., Zogheib C., Maharaj T., Becker C. Machine learning data practices through a data curation lens: An evaluation framework. In: Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency; 2024. 1055–1067.
  19. Qi G.J., Luo J. Small data challenges in big data era: A survey of recent progress on unsupervised and semi-supervised methods. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020; 44(4): 2168–2187.
  20. Ravi A. If we didn't solve small data in the past, how can we solve Big Data today? arXiv preprint arXiv:2111.04442. 2021.
  21. Inel O., Draws T., Aroyo L. Collect, measure, repeat: Reliability factors for responsible AI data collection. In: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing; 2023; 11(1): 51–64.
  22. Parmiggiani E., Grisot M. Data curation as governance practice. 2020.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».