Reputation-based System for Expert Workforce Support for China-Russia Partnership
- Authors: Kuzminov I.F.1, Ignatova V.A.2
-
Affiliations:
- National Research University Higher School of Economics
- MIREA – Russian Technological University
- Issue: Vol 75, No 1 (2025)
- Pages: 37-47
- Section: System diagnostics socio-economic processes
- URL: https://journals.rcsi.science/2079-0279/article/view/317018
- DOI: https://doi.org/10.14357/20790279250104
- EDN: https://elibrary.ru/KCLRBG
- ID: 317018
Cite item
Full Text
Abstract
About the authors
I. F. Kuzminov
National Research University Higher School of Economics
Email: ikuzminov@hse.ru
Candidate of Sciences (PhD) in Economic, Social, Political and Recreational Geography, Director, «Institute for Public Administration and Governance» 9-11 Myasnitskaya Str., Moscow, 101000
V. A. Ignatova
MIREA – Russian Technological University
Email: vignatovaa@yandex.ru
Lecturer 78 Vernadsky Avenue, Moscow, 119454
References
- Panova E.A. Vliyanie tsifrovizatsii na korporativnuyu kadrovuyu politiku [The impact of digitalization on corporate HR policy]. (In Russ).
- Asriants K.G., Magomedov O.A., Asriants D.V. Tsifrovye tekhnologii v protsesse realizatsii kadrovoy politiki. Prikladnye ekonomicheskie issledovaniya. 2023; 2: 75–79. Available from: https://cyberleninka.ru/article/n/tsifrovye-tehnologii-v-protsesse-realizatsii-kadrovoy-politiki [Accessed: 24.12.2024].
- Yamashita M., Tran T., Lee D. Fake resume attacks: Data poisoning on online job platforms. Proceedings of the ACM on Web Conference. 2024; 1734–1745.
- Nocker M., Sena V. Big data and human resources management: The rise of talent analytics. Social Sciences. 2019; 8(10): 273.
- Ayoobi N., Shahriar S., Mukherjee A. The looming threat of fake and LLM-generated LinkedIn profiles: Challenges and opportunities for detection and prevention. In: Proceedings of the 34th ACM Conference on Hypertext and Social Media; 2023; 1–10.
- Rathee R., Bhuntel R. Benefits, challenges, and impact of E-recruitment. VSRD International Journal of Business and Management Research. 2017; 7: 32–38.
- Maree M., Kmail A.B., Belkhatir M. Analysis and shortcomings of e-recruitment systems: Towards a semantics-based approach addressing knowledge incompleteness and limited domain coverage. Journal of Information Science. 2019; 45(6): 713–735.
- McGinty N.A., Lylova E.V. Transformation of the HR management in modern organizations. In: Proceedings of the 1st International Conference on Emerging Trends and Challenges in the Management Theory and Practice (ETCMTP 2019); 2020. 18–21.
- Tennant J.P. Web of Science and Scopus are not global databases of knowledge. European Science Editing. 2020; 46: e51987.
- Decorte J.J., Van Hautte J., Develder C., Demeester T. On the biased assessment of expert finding systems. arXiv preprint arXiv:2410.05018. 2024.
- Ponomarev N.M., Ivanova N.I. Nauchno-tekhnicheskoe sotrudnichestvo Rossiyskoy Federatsii i Kitaya [Scientific and technical cooperation of the Russian Federation and China]. Rossiyskiy vneshneekonomicheskiy vestnik. 2024; 5: 86–92. (In Russ.)
- Moseychuk M.A., Abduhalilov O.S., Petrochenko E.B. Protsessy tsifrovizatsii ekonomiki v Kitae i Rossii: Vliyanie na rynok truda [Processes of digitalization of the economy in China and Russia: Impact on the labor market]. 2023; 34.
- Yumin L., Skurko E.V. Ot "yazykovogo bar'era" k "yazykovomu mostu": Osnovy pravovoy politiki razvitiya mezhdunarodnogo sotrudnichestva v sfere nauki, kul'tury, obrazovaniya Kitaya i Rossii [From "language barrier" to "language bridge": Fundamentals of the legal policy for developing international cooperation in science, culture, and education between China and Russia]. Pravovaya politika i pravovaya zhizn'. 2020; 3: 28–35. (In Russ.)
- Smith H.A., McKeen J.D. Developments in practice XXX: Master data management: Salvation or snake oil? Communications of the Association for Information Systems. 2008; 23(1): 4.
- Bhadani A.K., Jothimani D. Big data: Challenges, opportunities, and realities. In: Effective Big Data Management and Opportunities for Implementation; 2016. 1–24.
- Venugopalan S., Narayanaswamy A., Yang S., Geraschenko A., Lipnick S., Makhortova N., Berndl M. It's easy to fool yourself: Case studies on identifying bias and confounding in biomedical datasets. arXiv preprint arXiv:1912.07661. 2019.
- Gándara D., Anahideh H., Ison M.P., Picchiarini L. Inside the black box: Detecting and mitigating algorithmic bias across racialized groups in college student-success prediction. AERA Open. 2024; 10: 23328584241258741.
- Bhardwaj E., Gujral H., Wu S., Zogheib C., Maharaj T., Becker C. Machine learning data practices through a data curation lens: An evaluation framework. In: Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency; 2024. 1055–1067.
- Qi G.J., Luo J. Small data challenges in big data era: A survey of recent progress on unsupervised and semi-supervised methods. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020; 44(4): 2168–2187.
- Ravi A. If we didn't solve small data in the past, how can we solve Big Data today? arXiv preprint arXiv:2111.04442. 2021.
- Inel O., Draws T., Aroyo L. Collect, measure, repeat: Reliability factors for responsible AI data collection. In: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing; 2023; 11(1): 51–64.
- Parmiggiani E., Grisot M. Data curation as governance practice. 2020.
Supplementary files
