Experience of multi-objective optimization of axial compressor stage

封面


如何引用文章

全文:

详细

BACKGROUND: Developing a universal optimization approach can reduce the time needed to improve compressor geometry. Therefore, the issue of implementing this approach when solving similar optimization problems is a relevant one.

AIM: Development and testing of the approach of setting up spatial multi-objective optimization problem for the compressor stage.

MATERIALS AND METHODS: The formation of the approach to optimization tasks is based on the experience of research organizations and the methods used in compressor engineering. To test this approach, the IOSO algorithm is used in conjunction with the AutoGrid5 mesh generator and the Ansys CFX solver.

RESULTS: At this study, a general approach was developed to formulate a multi-objective optimization problem, which serves as the basis for this entire project. A complete cycle of verification and validation was performed for the mathematical model of the studied object, which was built in the ANSYS CFX system. A method for creating a parametric model of vanes and flow parts of a stage is described. Two approaches of the optimization problem are presented: using low-Reynolds (SST) and high-Reynolds (k-ε) turbulence models, in order to assess the qualitative impact of these models on the results. For the convenience of data processing, a program was written in Python. A complete list of the object functions, optimization parameters, constraints, and assumptions used in the study is provided. In total, six different geometries of the study object were considered. For each variant, a sample analysis was performed in each of the five design sections. The detailed description of these analyses is omitted from this work. Integral characteristics of each proposed variant were built. Based on the results of the analysis, the most suitable variant was selected, both in terms of geometry and problem formulation.

CONCLUSION: As the study result, the developed approach has been tested. The disadvantages of the used method of setting up multi-objective optimization problem and methods for their solution in subsequent works are noted.

作者简介

Anton Zolotukhin

Peter the Great St. Petersburg Polytechnic University; Power Machines

编辑信件的主要联系方式.
Email: zolotuhinant@yandex.ru
ORCID iD: 0009-0009-3028-8512
SPIN 代码: 7756-7369

Postgraduate of the Higher School of Power Engineering, 3rd cat. design engineer of the Simulations Sector of the Compressor Department

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Lyubov Marenina

Peter the Great St. Petersburg Polytechnic University

Email: marenina_ln@mail.ru
ORCID iD: 0000-0001-9380-9754
SPIN 代码: 5842-1771

Cand. Sci. (Engineering), Assistant professor of the Higher School of Power Engineering

俄罗斯联邦, Saint Petersburg

Aleksander Drozdov

Peter the Great St. Petersburg Polytechnic University

Email: a_drozdi@mail.ru
ORCID iD: 0000-0002-3808-7098
SPIN 代码: 6030-5685

Dr. Sci. (Engineering), Professor of the Higher School of Power Engineering

俄罗斯联邦, Saint Petersburg

Aleksander Nikiforov

Smolensk State Agricultural Academy

Email: nikiforof@mail.ru
ORCID iD: 0009-0006-6890-2889
SPIN 代码: 9236-5572

Dr. Sci. (Engineering), Professor of the Mechanization Department

俄罗斯联邦, Smolensk

参考

  1. Inozemcev A, Sandracikj V. Gas Turbine Engines. Perm’: OAO “Aviadvigatel”; 2006. (In Russ.)
  2. Kim H, Liou MS. New fitness sharing approach for multi-objective genetic algorithms. Journal of Global Optimization. 2012;55(3):579–595. doi: 10.1007/s10898-012-9966-4
  3. Benini E. Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor. Journal of propulsion and power. 2004;20(3):559–565. doi: 10.2514/1.2703
  4. Samad A, Kim KY. Multi-objective optimization of an axial compressor blade. Journal of mechanical science and technology (Seoul Print). 2008;22(5):999–1007. doi: 10.1007/s12206-008-0122-5 EDN: HFVQWF
  5. Osyczka A. Multicriteria optimization for engineering design. In: Design Optimization. Elsevier; 1985:193–227. doi: 10.1016/b978-0-12-280910-1.50012-x
  6. Rechenberg I. Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog-Verlag; 1973. doi: 10.1002/fedr.4910860506
  7. Schwefel HP. Numerical optimization of computer models. Chichester: Wiley & Sons; 1981.
  8. Reid L. Performance of Single-Stage Axial-Flow Transonic Compressor with Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and with Design Pressure Ratio of 2.05. NASA Technical Paper. 1980;1659.
  9. Zolotukhin A, Marenina L. Verification of the methodology for conducting CFD studies of the axial compressor stage, using the example of the NASA Stage 37 in the ANSYS CFX. Saint Petersburg; 2023:506–510. (In Russ.) EDN: GOXMAG
  10. Zolotukhin A, Marenina L, Semenovskij V, et al. CFD calculations of the axial compressor stage NASA Stage 37. In: Innovative scientific research in the modern world: Collection of scientific articles based on the materials of the XV International scientific and practical conference, Ufa, October 22, 2024. Ufa: Vestnik nauki; 2024:57–64. (In Russ.) EDN: BQNPGW
  11. Zolotuhin A, Drozdov A, Marenina L. A method for creating a parametric model of a transonic compressor stage. In: Equipment and technology of petrochemical and oil and gas production: Proceedings of the 14th International Scientific and Technical Conference, Omsk, March 12-15, 2024. Omsk: Omskiy gosudarstvennyy tekhnicheskiy universitet; 2024:74–75. (In Russ.) EDN: ZFGMTS
  12. Attetkov A, Galkin S, Zarubin V. Optimization methods. Moscow: MGTU im NE Baumana; 2003. (In Russ.)
  13. Vorob’ev A, Malyshev F. Development of GTE-170.2 compressor. Prospects for the Development of Engine Building: Proceedings of the International Scientific and Technical Conf. named after N. D. Kuznetsov (June 21–23, 2023): in 2 vol. Samara: Samarskiy natsionalnyy issledovatelskiy universitet imeni akademika S.P. Koroleva; 2023;2:64–65. (In Russ.) EDN: JYSXEY
  14. “Sigma Technology”. Novel Optimization Strategy — IOSO. Iosotech.com. [internet] Accessed April 1, 2025. Available from: https://www.iosotech.com/
  15. Lieblein S, Schwenk FC, Broderick RL. Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements. NACA Research Memorandum. Washington: National Advisory Committee For Aeronautics; 1953.
  16. Lieblein S. Aerodynamic Design of Axial-flow Compressors. VI — Experimental Flow in Two-Dimensional Cascades. Washington: National Advisory Committee For Aeronautics; 1955.
  17. Cumpsty NA. Compressor Aerodynamics. Krieger Pub; 2004.
  18. Wislicenus GF. Fluid Mechanics of Turbomachinery. New York: Dover Publications; 1947.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The proposed diagram of the approach to setting up multi-objective optimization problem.

下载 (491KB)
3. Fig. 2. Parametric model of the axial compressor stage.

下载 (128KB)
4. Fig. 3. Comparison of the characteristics of the NASA Stage 37: initial (а) and parametric (b) models in two versions.

下载 (209KB)
5. Fig. 4. The diagram of the proposed formulation of the multi-criteria optimization problem for the NASA Stage 37.

下载 (304KB)
6. Fig. 5. A point cloud of alternative options obtained as a result of the NASA Stage 37 optimization: using the SST turbulence model: а, in  coordinates; b, in  coordinates; and using k-ε turbulence models: c, in  coordinates; d, in  coordinates.

下载 (328KB)
7. Fig. 6. Pareto frontiers for formulation with the SST (a) and the k-ε (b) turbulence models

下载 (174KB)
8. Fig. 7. Solid-state models of working and guiding vanes, optimized for the SST and the k-ε turbulence models.

下载 (311KB)
9. Fig. 8. Post-processing of rotor vane (a), (b) and stator vane (c), (d) for the k–ε turbulence model.

下载 (421KB)
10. Fig. 9. Post-processing of stator blade at specific section drel = 0,25: a: comparison of alternative profiles: b: in the form ω = f(CL,2); c: in the form ω = f(CL,m); d: in the form ω = f(Cs); e: in the form ω = f(Г).

下载 (571KB)
11. Fig. 10. Comparison of the integral characteristics of alternative options for two approaches: the SST: (a) и (b); the k–ε: (с) и (d).

下载 (453KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».