Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

No 1 (2023)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Information processing and data analysis

Automatic Classification of Documents in the University Electronic Document Management System

Tkachenko A.L., Denisova L.A.

Abstract

The issues of automatic text documents classification of the university in the electronic document management system are considered. A two-stage classification method based on machine learning and a numerical representation of documents is presented. It is proposed at the first stage of the method to reduce the collection size by screening out documents that do not belong to accepted classes (according to the probability of novelty of documents). At the second stage, the selection of documents with the highest occurrence frequencies of words characteristic of accepted classes documents is carried out (the formation of support vectors). The document is assigned a class to which most of the closest documents belong in accordance with the accepted distance metric. A set of programs for the text documents classification has been implemented, which is the basis for the information support of the university electronic document management system, and studies have been carried out confirming the effectiveness of the proposed method.

Journal of information technologies and computing systems. 2023;(1):3-19
pages 3-19 views

Analysis of Methods and Practices to Improve the Security of Electronic Means of Payment

Fedorova Y.V., Bykov A.A.

Abstract

Analysis of the variety of electronic means of payment, which are used in the banking sphere, showed that one of the main banking services now are mobile banking applications. However, security threats in mobile banking have deterred many customers from using it. The issue of elaboration of recommendations, which would allow to strengthen the authentication system to improve security processes, becomes relevant. To achieve this goal, it is necessary to investigate existing methods and practices to improve the security of electronic means of payment. The article presents an analysis of the vulnerabilities of banking applications, technologies for making money transfers, methods for leveling threats in the bank's mobile application system, and fraud protection systems.

Journal of information technologies and computing systems. 2023;(1):20-26
pages 20-26 views

Software for Psycho-Emotional Text Processing

Smirnov I.V.

Abstract

The paper considers the problem of psycho-emotional text processing, aimed at identifying the psychological characteristics of the author of the text and identifying the emotional characteristics of the text based on methods of psycholinguistics and artificial intelligence. A tool for psychoemotional analysis of texts in Russian is described as well as application of the tool to analysis of the VKontakte users’ reaction to fake messages is presented.

Journal of information technologies and computing systems. 2023;(1):27-38
pages 27-38 views

Statistical Classifier for Diagnosing Oncological Diseases

Gavrikov B.M., Pestryakova N.V.

Abstract

An approach to the diagnosis of human oncological diseases of various localization is described. For this purpose, a statistical classifier developed by the authors is used, which is based on a polynomial-regression approach and has probabilistic estimates. Training was conducted on databases of analysis of peripheral blood of cancer patients for various body systems.

Journal of information technologies and computing systems. 2023;(1):39-49
pages 39-49 views

Estimation of the Optimal Criterion for Matching Coinciding Stria in Marks of Rifling Lands

Sorokina K.O., Fedorenko V.A.

Abstract

Algorithms for automatic comparison of the traces of the rifling lands (secondary toolmarks) are currently under active development. The calculation of a quantitative estimate based on the results of the comparison of the similarity of the traces of the rifling lands is also being investigated. Determining the optimal criterion for categorizing striae as "matching" in coincident secondary toolmarks is an actual problem. Our studies have shown that assigning traces to the "matching" class can be performed using Shannon information entropy. In this case, the Shannon entropy is used to estimate the criterion of optimal striae intersection. To carry out a model experiment, a sample of 344 pairs of obviously matching and 344 pairs of obviously non-matching secondary toolmarks was formed. On its basis, 200 validation subsamples were formed. The realizations characterized by the lowest entropy were calculated for each criterion of striae overlap in width (10%-100%, 20%-100%, ..., 100%) for all subsamples. It was shown that for secondary toolmarks on bullets fired from a Makarov pistol, this criterion is the interval of striae overlaps in width from 60% to 100%.

Journal of information technologies and computing systems. 2023;(1):50-58
pages 50-58 views

Mathematical modeling

Evaluation of the Effectiveness of Functional Systems of Radio Frequency Identification of Vehicles

Vishnevsky V.M., Larionov A.A., Mikhailov E.A., Fedotov I.A., Abramian V.L.

Abstract

This paper evaluates the performance of a promising system for recording violations of traffic rules using RFID tags embedded in state license plates of vehicles. This system was tested on the roads of the Republic of Tatarstan and the Central Ring Road in the Moscow Region, and at present it is planned to introduce the system in pilot mode in several regions of the Russian Federation. To assess the probability of identifying a vehicle under various conditions, both a probabilistic model and simulation methods have been developed. It is shown that, in comparison with the "classical" identification methods currently used, this approach allows achieving higher work efficiency and minimizing possible errors in the identification of the offending vehicle.

Journal of information technologies and computing systems. 2023;(1):59-70
pages 59-70 views

Approximate Estimation Using the Accelerated Maximum Entropy Method. Part 2. Study of the Properties of Estimates

Dubnov Y.A., Boulytchev A.V.

Abstract

In this paper, we investigate a method of approximate entropy estimation, designed to speed up the classical method of maximum entropy estimation due to the use of regularization in the optimization problem. This method is compared with the method of maximum likelihood and Bayesian estimation, both experimentally and in terms of theoretical calculations for some special cases. Estimation methods are tested on the example of a linear regression problem with errors of various types, including asymmetric distributions as well as a multimodal distribution in the form of a mixture of Gaussian components.

Journal of information technologies and computing systems. 2023;(1):71-81
pages 71-81 views

Investigation of Defect Compensation in the Manufacture of a Batch of Units in Flexible Production

Aristova N.I.

Abstract

The problem of manufacturing a certain number of high-quality products in flexible discrete industries is considered. Since a certain number of products always goes to waste, it is necessary to provide for the manufacture of an excess number of products, which will require an additional number of blanks, resources, etc. The problem is studied using a modeling methodology that allows analyzing the efficiency of automation of a given set of technological operations at the initial stage of technological preparation of flexible production.

Journal of information technologies and computing systems. 2023;(1):82-86
pages 82-86 views

Intelligent systems and technologies

Applying Machine Learning Techniques for Requirements Quality Control

Gaydamaka K.I.

Abstract

The quality of requirements is critical to the success of complex technical systems projects. The paper presents the main procedures for quality control of requirements and the main directions of instrumental support for quality control of requirements. The shortcomings of the existing tools of instrumental support are listed. To overcome these shortcomings, it is proposed to apply machine learning algorithms. The main directions of research in the field of application of machine learning algorithms in the problems of requirements quality control are proposed. The experimental results obtained by the author, demonstrating the feasibility of the proposed approach, are presented. In some tasks, it was possible to achieve a quality of assessment comparable to that of an expert.

Journal of information technologies and computing systems. 2023;(1):87-96
pages 87-96 views

Knowledge Base Generation Based on Fuzzy Clustering

Moiseeva T.A., Ledeneva T.M.

Abstract

The article states fuzzy Takagi-Sugeno rule base generation problem based on ellipsoidal clustering. After obtaining clusters of ellipsoidal shape the problem of building minimal volume ellipsoids, enclosing all clusters points, appears. The premises of the generated fuzzy rules are formed by constructing projections of ellipsoids on the coordinate axis, and conclusions – either using ellipsoid axes, or based on the projection. In the article, the authors suggest to use Khachiyan’s algorithm for building minimal volume enclosing ellipsoid in order to increase the accuracy of approximation and they compare two approaches of choosing optimal parameters of ellipsoids which enclose all clusters points.

Journal of information technologies and computing systems. 2023;(1):97-108
pages 97-108 views

Control and decision making

Method of Intelligent Support for Management Decision(Making in Corporate Expert Networks

Petrov M.V.

Abstract

Effective human resource management prevents excessive costs, improves the quality of products and services, and promotes better workforce planning. The use of expert networks is aimed at improving the company's business processes based on know-how and innovative technological solutions. Improving the efficiency of management decisions in corporate expert networks is a significant task. This improving can be based on the automation of processes associated with the extraction, structuring and use of information and knowledge about innovations, projects and experts. A method that provides information support for such processes can be used to solve this problem by processing and providing only the most necessary information and possible solutions. This article discusses in detail such a method, which includes algorithms aimed at extracting innovations, their analysis and selection, organizing the process of creating projects for the implementation of selected innovations, forming teams for the joint implementation of such projects, updating the competencies of project executors. The method also includes a competence ontology used by these algorithms. The conducted experimental studies have shown an improving the efficiency of management decisions in corporate expert networks in terms of qualitative and quantitative criteria through the use of the developed method.

Journal of information technologies and computing systems. 2023;(1):109-122
pages 109-122 views

Mathematical foundations of information technology

An Algorithm for Solution of Scheduling Problem for Job Shop with Group Machining

Korovin K.I., Romanova E.V., Muminova S.R., Osipov A.V., Pleshakova E.S., Chernyshov L.N., Gataullin Sergey T. G.G.

Abstract

The paper presents the new algorithm for solving one problem from the scheduling theory. The method is based on the principle of graph coloring and allows simultaneous processing of several details in one workplace. The problems of scheduling theory are briefly analyzed and the place of the given problem is determined within the general classification of problems. The scheduling algorithm and the program on the basis of it have been developed to solve this problem for various optimality criteria. Two versions of the program have been implemented. The first one follows directly the data structures and the sequence of actions of the graph coloring method. In the second version, the structures of the linear representation of the graph are used, as well as multi-step operations are introduced, which made it possible to increase the efficiency of the scheduling algorithm. The time characteristics of the program execution on a different number of details for two versions of the program are given. The prospects for the development of the program and the scope of its application are discussed and could be rather wide, from agribusiness, such as optimizing the production of meat products, to manufacturing enterprises with a significant range of product line.

Journal of information technologies and computing systems. 2023;(1):123-132
pages 123-132 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».