Detection of Tears on Document Page Using Analysis of Infrared Image

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper examines the problem of detecting tears on a protected document page. We present an approach based on analyzing the document image in the infrared range. It is assumed that in this case it is possible to separate the damage from the protective elements applied by IR-transparent inks. So the problem of tears detection might be reduced to a search for thin lines of a certain length adjacent to the border of the document page. Thus, we developed a tear search algorithm based on the search for "ridge" type lines followed by checking whether the line satisfies the specified properties. We created and pub- lished a VIUR dataset with Russian banknotes in order to test the algorithm. The recall of the proposed algorithm is 0.87, the precision is 0.94.

About the authors

Olga A. Padas

Smart Engines Service LLC

Author for correspondence.
Email: o.padas@smartengines.com

Research interests are image pro- cessing, computer vision

Russian Federation, Moscow

Irina A. Kunina

Institute for Information Transmission Problems of RAS (Kharkevich Institute)

Email: i.kunina@smartengines.com

Ph.D in Technical Science

Russian Federation, Moscow

References

  1. Awal, A. M., Ghanmi, N., Sicre, R., Furon, T.. Complex document classification and localization application on identity document images. 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017; 1: 426-431.
  2. Attivissimo, F., Giaquinto, N., Scarpetta, M., & Spadavecchia, M. An automatic reader of identity documents. IEEE International Conference on Systems, Man and Cybernetics (SMC). 2019; p. 3525-3530.
  3. Arlazarov, V. L., Arlazarov, V. V., Bulatov, K. B., Chernov, T. S., Nikolaev, D. P., Polevoy, D. V., ... , Usilin, S. A.. Mobile ID Document Recognition–Coarse-to-Fine Ap- proach. Pattern Recognition and Image Analysis. 2022; 32(1): 89-108.
  4. Chernyshova, Y. S., Aliev, M. A., Gushchanskaia, E. S., Sheshkus, A. V. Optical font recognition in smartphonecaptured images and its applicability for ID forgery detection. Eleventh International Conference on Machine Vision (ICMV 2018). 2018; 11041: 402-409.
  5. Kada, O., Kurtz, C., van Kieu, C., Vincent, N.. Hologram Detection for Identity Document Authentication. International Conference on Pattern Recognition and Artificial In- telligence. Cham: Springer International Publishing. 2022;
  6. p. 346-357.
  7. Koliaskina, L. I., Emelianova, E. V., Tropin, D. V., Popov,V. V., Bulatov, K. B., Nikolaev, D. P., Arlazarov, V. V. MIDV-Holo: A Dataset for ID Document Hologram Detection in a Video Stream. International Conference on Document Analysis and Recognition. Cham: Springer Nature Switzerland. 2023; 486-503.
  8. Polevoy D. V., Panfilova E. I., Nikolaev D. P.. White balance correction for detection of holograms in color images of black and white photographs. ITiVS. 2021; 3: 82-95. doi: 10.14357/20718632210308.
  9. Valov M. A., Matalov D. P., Usilin S. A.. The use of centrally symmetric Haar features for stamp localization on the passport of a citizen of the Russian Federation. Trudy ISA RAN (Proceedings of ISA RAS). 2023; 73(3): 31-3. doi: 10.14357/20790279230304. (In Russ)
  10. Schityvatel' Dokumentov PS4-02 PSHNK.468469.009. Available from: http://ex-pertprospb.ru/2019/05/31/schityvatel-dokumentov-ps4-02- pshnk-468469-009/ [Accessed 13 October 2023]. (In Russ)
  11. Passport Scanner With RFID OCR4000. Available from: http://www.tenkoto.com/en/Products/pos/2019/0827/Read er/Passport.html [Accessed 13 October 2023].
  12. Kunina, I. A., Aliev, M. A., Arlazarov, N. V., & Polevoy,D. V.. A method of fluorescent fibers detection on identity documents under ultraviolet light. Twelfth International Conference on Machine Vision (ICMV 2019). 2020; 11433:89-96.
  13. Kaur, A., Raj, A., Jayanthi, N., Indu, S.. Inpainting of irregular holes in a manuscript using unet and partial convolution. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). 2020; p 778-784.
  14. Hedjam, R., Cheriet, M.. Historical document image resto- ration using multispectral imaging system. Pattern Recognition. 2013; 46(8): 2297-2312.
  15. de Sá Soares, A., das Neves Junior, R. B., Bezerra, B. L. D.. BID Dataset: a challenge dataset for document processing tasks. Anais Estendidos do XXXIII Conference on Graphics, Patterns and Images. SBC, 2020; p. 143-146.
  16. Bulatovich, B. K., Vladimirovna, E. E., Vyacheslavovich,
  17. T. D., Sergeevna, S. N., Sergeevna, C. Y., Zuheng, M., ..., Muzzamil, L. M. MIDV-2020: a comprehensive bench- mark dataset for identity document analysis. Computer Optics. 2022; 46(2): 252-270.
  18. Polevoy D. V., Sigareva I. V., Ershova D. M., Arlazarov
  19. V. V., Nikolaev D. P., Zuheng M., Muhammad M. L., Burie J.. Document Liveness Challenge dataset (DLC- 2021). Journal of Imaging. 2022; 8(7). 181. doi: 10.3390/jimaging8070181.
  20. Tropin D. V., Shemyakina Y. A., Konovalenko I. A., Faradjev I. A.. Localization of planar objects on the images with complex structure of projective distortion. Informatsionnye protsessy. 2019; 19(2): 208-229. (In Russ)
  21. Skaner Dokumentov SD-03 PSHNK.468469.016. Availa- ble from: http://expertprospb.ru/2021/09/07/skaner- dokumentov-sd-03-pshnk-468469-016/. [Accessed: 13 October 2023]. (In Russ)

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».