Development of Technologies Based on Additional Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article discusses various image recognition technologies and proposes methods to enhance them by exploring additional features. In particular, a new approach is introduced that contributes to improving image recognition by using Harris corners as additional features in images. This significantly enhances the accuracy of the recognition classification model. The significance of this approach lies in its ability to enhance the recognition system's capabilities in detecting and highlighting key object features, ultimately leading to more reliable and efficient results in data analysis, processing, and classification. It also increases the model's robustness. Thanks to these improvements, this image recognition technology can be successfully applied in various fields where high accuracy and reliability are required in information recognition, such as medicine, vehicle classification, and more.

About the authors

Alexander A. Zatsarinny

Federal Research Center “Computer Science and Control of Russian Academy of Sciences”

Author for correspondence.
Email: AZatsarinny@ipiran.ru

Doctor of Science in technology, professor, principal scientist

Russian Federation, Moscow

Alexander A. Karandeev

Federal Research Center "Keldysh Institute of Applied Mathematics of Russian Academy of Sciences"

Email: KarAlex755@gmail.com

PhD in Engineering sciences

Russian Federation, Moscow

Alexey E. Maslov

Federal Research Center “Computer Science and Control of Russian Academy of Sciences”

Email: amaslov@frccsc.ru

Researcher

Russian Federation, Moscow

Vladimir P. Osipov

Federal Research Center "Keldysh Institute of Applied Mathematics of Russian Academy of Sciences"

Email: osipov@keldysh.ru

PhD in Engineering sciences, leading researcher

Russian Federation, Moscow

Nikita Y. Apalkov

Plekhanov Russian University of Economics

Email: nikita_apalkov@mail.ru

Master's degree student 

Russian Federation, Moscow

References

  1. Yue X., Lyu B., Li H., Meng L., Furumoto K. Real-time medicine packet recognition system in dispensing medicines for the elderly // Measurement: Sensors. 2021.
  2. Mahami H., Ghassemi N., Darbandy M. T., Shoeibi A., Hussain S., Nasirzadeh F., Alizadehsani R., Nahavandi D., Khosravi A., Nahavandi S. Material Recognition for Automated Progress Monitoring using Deep Learning Methods // Computer Vision and Pattern Recognition. 2021.
  3. Rinne M., Bagheri M., Tolvanen T., Hollmén J. Automatic Recognition of Public Transport Trips from Mobile Device Sensor Data and Transport Infrastructure Information // International Workshop on Personal Analytics and Privacy. 2017.
  4. Shadiev R., Zhang Z. H., Wu T.-T., Huang Y.M. Review of Studies on Recognition Technologies and Their Applications Used to Assist Learning and Instruction // Educational Technology & Society. 2020. № 4. pp 59-74.
  5. Waelen R.A. The struggle for recognition in the age of facial recognition technology // AI and Ethics. 2023. № 3. pp 215–222.
  6. Solem Ya. E., Programming computer vision in Python/ M.DMK Press, 2016. – 312 p
  7. Selyankin V.V. Computer vision. Image analysis and processing – Saint Petersburg: Lan, 2021.152 p.
  8. Papastratis I., Dimitropoulos K., Daras P. Continuous Sign Language Recognition through a Context-Aware Generative Adversarial Network // Sensors. 2021. № 7. 2437.
  9. Sun Z., Ke Q., Rahmani H., Bennamoun M., Wang G., Liu
  10. J. Human Action Recognition from Various Data Modalities: A Review // IEEE transactions on pattern analysis and machine intelligence. 2022.
  11. Lui X., Deng Z., Yang Y. Recent progress in semantic image segmentation // Artificial Intelligence Review. 2018. № 2. pp 1089-1106.
  12. Warr Katie, Reliability of neural networks: strengthening the resistance of AI to deception. — St. Petersburg: Peter, 2021. — 272 p.
  13. Geirhos R. et al. ImageNet-Trained CNNs Are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness, 2019.
  14. Harris C. G., Stephens M. J. A Combined Corner and Edge Detector // Alvey Vision Conference. 1988.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».