Segmentation of Pulmonary Nodules on Computed Tomography Scans

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article describes a solution to the problem of automating the process of segmentation of pulmonary nodules on computed tomography scans to expand the functionality of the previously developed module for determining the size and volume of pulmonary nodules. The main focus of the article is on comparing the accuracy of the models with the ResU-Net, Attention U-Net and Dense U-Net architectures when training on computed tomography images from the LIDC-IDRI dataset in their original form and using two proposed three-channel approaches to their preprocessing. For the three architectures considered, the DSC and IoU values in the ranges 0.8570–0.8735 and 0.7545–0.7881 were achieved. The best metric values were demonstrated by models trained on three-channel images with averaging. In such images, the first channel is represented by a scan in its original form, the second by an averaged scan, and the third by a scan to which anisotropic diffuse filtration is applied. The obtained results allow us to conclude that the use of preprocessing methods is promising for improving the accuracy of segmentation. The article also describes the training of the lung lobes segmentation model using data from the TotalSegmentator dataset. The input data of the modified software module are computed tomography scans, and its output data are processed images and a structured report (DICOM SR). This report, in addition to data on the size and volume of pulmonary nodules, contains information on the lobes in which the detected nodules are located.

作者简介

Anastasia Teplyakova

Obninsk Institute for Nuclear Power Engineering

编辑信件的主要联系方式.
Email: anastasija-t23@mail.ru

Senior Lecturer, Postgraduate Student

俄罗斯联邦, Obninsk

参考

  1. Siegel R. L., Giaquinto A. N., Jemal A. Cancer statistics. CA: A Cancer Journal for Clinicians. 2024;74(1):12-49. doi: 10.3322/caac.21820.
  2. Tursun-zade R. et al. Sex differences in lung cancer incidence and mortality in Russia in the light of computed tomography usage expansion: breakpoint and age-period-cohort analyses. Cancer Epidemiology. 2024;93:102654. doi: 10.1016/j.canep.2024.102654.
  3. Teplyakova A. R. Development of a Module for Determining the Size and Volume of Pulmonary Nodules. Informacionnye tekhnologii i vychislitel'nye sistemy. 2024;1:46-55. (in Russ.). doi: 10.14357/20718632240105.
  4. Gombolevskiy V. А. et al. Main achievements of low-dose computed tomography in lung cancer screening. Tuberculosis and lung diseases. 2021. 99(1):61-70 (in Russ.). doi: 10.21292/2075-1230-2021-99-1-61-70.
  5. Armato 3rd S. G. et al. Data From LIDC-IDRI [Data set]. The Cancer Imaging Archive. 2015. doi: 10.7937/K9/TCIA.2015.LO9QL9SX.
  6. Suji R. J. Et al. Optical Flow Methods for Lung Nodule Segmentation on LIDC-IDRI Images. Journal of Digital Imaging. 2020;33(5):1306-1324. doi: 10.1007/s10278-02000346-w.
  7. Yang H. et al. Lung Nodule Segmentation and Uncertain Region Prediction With an Uncertainty-Aware Attention Mechanism. IEEE Transactions on Medical Imaging. 2024;43(4):1284-1295. doi: 10.1109/TMI.2023.3332944.
  8. Dong L., Liu H. Segmentation of Pulmonary Nodules Based on Improved UNet++. In: Proceedings of the 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 2021. P. 1-5. doi: 10.1109/CISPBMEI53629.2021.9624438.
  9. Niranjan Kumar S. et al. Lung Nodule Segmentation Using UNet. In: Proceedings of the 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 2021. P. 420-424. doi: 10.1109/ICACCS51430.2021.9441977.
  10. Bruntha P.M. et al. Lung_PAYNet: a pyramidal attention based deep learning network for lung nodule segmentation. Scientific Reports. 2022;12:20330. doi: 10.1038/s41598022-24900-4.
  11. Selvadass S. et al. SAtUNet: Series atrous convolution enhanced U-Net for lung nodule segmentation. International Journal of Imaging Systems and Technology. 2024;34(1):22964. doi: 10.1002/ima.22964.
  12. Zhang, X. et al. Lung Nodule CT Image Segmentation Model Based on Multiscale Dense Residual Neural Network. Mathematics. 2023;11(6):1363. doi: 10.3390/math11061363.
  13. Chen Y. A. et al. Lung Nodule Segmentation in LDCT: Modified 3D nnUNet with Unified Focal Loss. In: Proceedings of the International Conference on Electrical, Computer and Energy Technologies (ICECET 2023). 2023. doi: 10.1109/ICECET58911.2023.10389288.
  14. Ghasemi S. et al. RePoint-Net detection and 3DSqU2 Net segmentation for automatic identification of pulmonary nodules in computed tomography images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2023;12(1):2258998. doi: 10.1080/21681163.2023.2258998.
  15. Ma X. et al. An improved V-Net lung nodule segmentation model based on pixel threshold separation and attention mechanism. Scientific Reports. 2024;14:4743. doi: 10.1038/s41598-024-55178-3.
  16. Sweetline B. C. Overcoming the Challenge of Accurate Segmentation of Lung Nodules: A Multi-crop CNN Approach. Journal Of Imaging Informatics In Medicine. 2024;37(3):988-1007. doi: 10.1007/s10278-024-01004-1.
  17. Chen W. et al. CT Lung Nodule Segmentation: A Comparative Study of Data Preprocessing and Deep Learning Models. IEEE Access. 2023;11:34925-34931. doi: 10.1109/ACCESS.2023.3265170.
  18. Teplyakova A. R., Shershnev R. V., Starkov S. O. Method of muscle tissue segmentation in computed tomography images based on preprocessed three-channel images. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2024;24(4):661-664. (in Russ.). doi: 10.17586/2226-1494-2024-24-4-661-664.
  19. Kaur R., Juneja M., Mandal A.K. A comprehensive review of denoising techniques for abdominal CT images. Multimedia Tools and Applications. 2018;77(17):22735-22770. doi: 10.1007/s11042-017-5500-5.
  20. Perona P., Malik J. Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990;12(7):629-639. doi: 10.1109/34.56205.
  21. Wasserthal J. Dataset with segmentations of 117 important anatomical structures in 1228 CT images (2.0.1) [Data set]. Zenodo. 2023. doi: 10.5281/zenodo.10047292.
  22. Armato 3rd S. G. et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical Physics. 2011;38(2):915-31. doi: 10.1118/1.3528204.
  23. Fedorov A. et al. Standardized representation of the TCIA LIDC-IDRI annotations using DICOM. The Cancer Imaging Archive. 2018. doi: 10.7937/TCIA.2018.h7umfurq.

补充文件

附件文件
动作
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».