Computing the Fermi−Dirac Functions by Exponentially Convergent Quadratures


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Highly accurate specialized quadrature formulas are constructed for directly computing the Fermi−Dirac functions of the half-integer index. It is shown that the dependence of the error on the number of nodes is not power-law but exponential. The properties of such formulas are investigated. It is demonstrated that the factor of the convergence exponent is determined by the distance to the nearest pole of the integrand. This provides a very fast convergence of the quadratures. Simple approximations of the Fermi−Dirac functions of the integer and half-integer indices with an accuracy better than 1% are constructed; these approximations are convenient for physical estimates. In passing, asymptotic representations for Bernoulli numbers are found.

Sobre autores

N. Kalitkin

Keldysh Institute of Applied Mathematics

Autor responsável pela correspondência
Email: kalitkin@imamod.ru
Rússia, Moscow, 125047

S. Kolganov

National Research University of Electronic Technology

Email: kalitkin@imamod.ru
Rússia, Zelenograd, Moscow, 124498

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018