Computing the Fermi−Dirac Functions by Exponentially Convergent Quadratures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Highly accurate specialized quadrature formulas are constructed for directly computing the Fermi−Dirac functions of the half-integer index. It is shown that the dependence of the error on the number of nodes is not power-law but exponential. The properties of such formulas are investigated. It is demonstrated that the factor of the convergence exponent is determined by the distance to the nearest pole of the integrand. This provides a very fast convergence of the quadratures. Simple approximations of the Fermi−Dirac functions of the integer and half-integer indices with an accuracy better than 1% are constructed; these approximations are convenient for physical estimates. In passing, asymptotic representations for Bernoulli numbers are found.

作者简介

N. Kalitkin

Keldysh Institute of Applied Mathematics

编辑信件的主要联系方式.
Email: kalitkin@imamod.ru
俄罗斯联邦, Moscow, 125047

S. Kolganov

National Research University of Electronic Technology

Email: kalitkin@imamod.ru
俄罗斯联邦, Zelenograd, Moscow, 124498

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018