🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Computing the Fermi−Dirac Functions by Exponentially Convergent Quadratures


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Highly accurate specialized quadrature formulas are constructed for directly computing the Fermi−Dirac functions of the half-integer index. It is shown that the dependence of the error on the number of nodes is not power-law but exponential. The properties of such formulas are investigated. It is demonstrated that the factor of the convergence exponent is determined by the distance to the nearest pole of the integrand. This provides a very fast convergence of the quadratures. Simple approximations of the Fermi−Dirac functions of the integer and half-integer indices with an accuracy better than 1% are constructed; these approximations are convenient for physical estimates. In passing, asymptotic representations for Bernoulli numbers are found.

About the authors

N. N. Kalitkin

Keldysh Institute of Applied Mathematics

Author for correspondence.
Email: kalitkin@imamod.ru
Russian Federation, Moscow, 125047

S. A. Kolganov

National Research University of Electronic Technology

Email: kalitkin@imamod.ru
Russian Federation, Zelenograd, Moscow, 124498

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.