Pseudodifferential Operators and Markov Processes on Adèles


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this article a class of Markov processes on the ring of finite adèles of the rational numbers are introduced. A class of non-Archimedean metrics on \(\mathbb{A}_{f}\) are chosen in order to describe this ring as a general polyadic ring and to introduce a family of pseudodifferential operators and parabolic-type equations on \({L^2}(\mathbb{A}_{f})\). The fundamental solutions of these parabolic equations determine transition functions of time and space homogeneous Markov processes on \(\mathbb{A}_{f}\) which are invariant under multiplication by units. Considering the infinite place ℝ, we extend these results to the complete ring of adèles.

Sobre autores

Victor Aguilar-Arteaga

Departamento de Matemáticas

Autor responsável pela correspondência
Email: aguilarav@math.cinvestav.mx
México, Mexico City

Samuel Estala-Arias

Universidad Autónoma de Querétaro, UAQ

Autor responsável pela correspondência
Email: samuel.estala.arias@gmail.com
México, Santiago de Querétaro

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019