Pseudodifferential Operators and Markov Processes on Adèles


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this article a class of Markov processes on the ring of finite adèles of the rational numbers are introduced. A class of non-Archimedean metrics on \(\mathbb{A}_{f}\) are chosen in order to describe this ring as a general polyadic ring and to introduce a family of pseudodifferential operators and parabolic-type equations on \({L^2}(\mathbb{A}_{f})\). The fundamental solutions of these parabolic equations determine transition functions of time and space homogeneous Markov processes on \(\mathbb{A}_{f}\) which are invariant under multiplication by units. Considering the infinite place ℝ, we extend these results to the complete ring of adèles.

作者简介

Victor Aguilar-Arteaga

Departamento de Matemáticas

编辑信件的主要联系方式.
Email: aguilarav@math.cinvestav.mx
墨西哥, Mexico City

Samuel Estala-Arias

Universidad Autónoma de Querétaro, UAQ

编辑信件的主要联系方式.
Email: samuel.estala.arias@gmail.com
墨西哥, Santiago de Querétaro

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019