Pseudodifferential Operators and Markov Processes on Adèles
- Authors: Aguilar-Arteaga V.A.1, Estala-Arias S.2
-
Affiliations:
- Departamento de Matemáticas
- Universidad Autónoma de Querétaro, UAQ
- Issue: Vol 11, No 2 (2019)
- Pages: 89-113
- Section: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/201165
- DOI: https://doi.org/10.1134/S2070046619020018
- ID: 201165
Cite item
Abstract
In this article a class of Markov processes on the ring of finite adèles of the rational numbers are introduced. A class of non-Archimedean metrics on \(\mathbb{A}_{f}\) are chosen in order to describe this ring as a general polyadic ring and to introduce a family of pseudodifferential operators and parabolic-type equations on \({L^2}(\mathbb{A}_{f})\). The fundamental solutions of these parabolic equations determine transition functions of time and space homogeneous Markov processes on \(\mathbb{A}_{f}\) which are invariant under multiplication by units. Considering the infinite place ℝ, we extend these results to the complete ring of adèles.
About the authors
Victor A. Aguilar-Arteaga
Departamento de Matemáticas
Author for correspondence.
Email: aguilarav@math.cinvestav.mx
Mexico, Mexico City
Samuel Estala-Arias
Universidad Autónoma de Querétaro, UAQ
Author for correspondence.
Email: samuel.estala.arias@gmail.com
Mexico, Santiago de Querétaro
Supplementary files
