THE ROLE OF MONOAMINES IN REGULATION OF ANGIOGENESIS AND PROSPECTS OF THEIR APPLICATION IN RETINOPATHY OF PREMATURITY


Cite item

Full Text

Abstract

Retinopathy of prematurity is the main cause of visual impairment and blindness in infants with low birth weight and preterm gestational age, in spite of the achievements in neonatology and wide applying of diagnostic and treatment guidelines. The pathogenetic role of VEGF is determined in course of normal angiogenesis and in retinopathy of prematurity. Scientists continue the search of another significant vasoprolifirative factors and methods how to inhibit them. This review is devoted to monoamines’ role in angiogenesis. The search for the relevant literature was carried out using the Medline database.

About the authors

L. A Katargina

The Helmholtz Moscow Research Institute of Eye Diseases, Russian Ministry of Health

Moscow, 105062, Russian Federation

E. V Denisova

The Helmholtz Moscow Research Institute of Eye Diseases, Russian Ministry of Health

Moscow, 105062, Russian Federation

N. A Osipova

The Helmholtz Moscow Research Institute of Eye Diseases, Russian Ministry of Health

Moscow, 105062, Russian Federation

Anna Y. Panova

The Helmholtz Moscow Research Institute of Eye Diseases, Russian Ministry of Health

Email: annie_panova18@mail.ru
PhD student of the Ophthalmological Department of Pediatric Surgery, The Helmholtz Moscow Research Institute of Eye Diseases, Russian Ministry of Health, Moscow, 105062, Russian Federation Moscow, 105062, Russian Federation

References

  1. Park S.H., Yum H.R., Kim S., Lee Y. C. Retinopathy of prematurity in Korean infants with birthweight greater than 1500 g. Br. J. of Ophthalmol. 2016; 100: 834-38.
  2. Hellström A., Källén K., Carlsson B., Holmström G., Jakobsson P., Lundgren P., Hellgren K. Extreme prematurity, treated retinopathy, bronchopulmonary dysplasia and cerebral palsy are significant risk factors for ophthalmological abnormalities at 6.5 years of age. Acta Paediatr. 2017; doi: 10.1111/apa.14206.
  3. Zhu X., Zhao R., Wang Y., Ouyang L., Yang J., Li Y. et al. Refractive state and optical compositions of preterm children with and without retinopathy of prematurity in the first 6 years of life. Medicine. 2017; 96(45): e8565. doi: 10.1097/MD.0000000000008565.
  4. Нероев В.В., Коголева Л.В., Катаргина Л.А. Особенности течения и результаты лечения активной ретинопатии недоношенных у детей с экстремально низкой массой тела при рождении. Рос. офтальмол. журнал. 2011; (4): 50-3.
  5. Нероев В.В., Катаргина Л.А., Коголева Л.В. Профилактика слепоты и слабовидения у детей с ретинопатией недоношенных. Вопросы современной педиатрии. 2015; 14(2): 265-70.
  6. Mintz-Hittner H.A., Kennedy K.A., Chuang A.Z. Efficacy of Intravitreal Bevacizumab for Stage 3+ Retinopathy of Prematurity. N. Eng. J. Med. 2011; 364(7): 603-15.
  7. Witmer A.N., Vrensen G. F.J.M., Van Noorden C.J.F., Schlingemann R.O. Vascular endothelial growth factors and angiogenesis in eye disease. Progr. Retin. Eye Res. 2003; 22(1): 1-29.
  8. Sanghi G., Dogra M.R., Katoch D., Gupta A. Aggressive posterior retinopathy of prematurity: risk factors for retinal detachment despite confluent laser photocoagulation. Am. J. Ophthalmol. 2013; 155(1): 159-64.
  9. VanderVeen D.K., Melia M., Yang M.B., Hutchinson A.K., Wilson L.B. Lambert S.R. et al. Anti-vascular endothelial growth factor therapy for primary treatment of type 1 retinopathy of prematurity: a report by the American Academy of Ophthalmology. Ophthalmology. 2017; 124(5): 619-33.
  10. Kara C., Hekimoğlu E., Petriçli İ.S., Akıl H. Intravitreal bevacizumab as rescue therapy following treatment failure with laser photocoagulation in retinopathy of prematurity. J. Cur. Ophthalmol. 2018; 30(1): 80-4.
  11. Kurtul B.E., Kabatas E.U., Zenciroglu A., Ozer P.A., Ertugrul G.T., Beken S., Okumus N. Serum neutrophil-to-lymphocyte ratio in retinopathy of prematurity. J. AAPOS. 2015; 19(4): 327-31.
  12. Hellström A., Engström E., Hård A.L., Albertsson-Wikland K., Carlsson B., Niklasson A., Holmström G. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics. 2003; 112(5): 1016-20.
  13. Hellström A., Ley D., Hansen-Pupp I., Hallberg B., Ramenghi L. A., Löfqvist C. et al. IGF-I in the clinics: Use in retinopathy of prematurity. Growth Horm. IGF Res. 2016; 30: 75-80.
  14. Coşkun Y., Dalkan C., Yabaş Ö., Demirel Ö.Ü., Bayar E.S., Sakarya S. et al. A predictive score for retinopathy of prematurity by using clinical risk factors and serum insulin-like growth factor-1 levels. Int. J. Ophthalmol. 2017; 10 (11): 1722-27.
  15. Катаргина Л.А., Слепова О.С., Демченко Е.Н., Осипова Н.А. Роль системного дисбаланса цитокинов в патогенезе ретинопатии недоношенных. Роc. педиатр. офтальмол. 2015; 10(4): 16-9.
  16. Dowling J.E., Ehinger B. Synaptic organization of the amine-containing interplexiform cells of the goldfish and Cebus monkey retinas. Science. 1975; 188 (4185): 270-3.
  17. Фирсов М.Л., Астахова Л.А. Роль дофамина в регуляции функции сетчатки позвоночных. Рос. Физиолог. Ж. Сеченова. 2014; 100(7): 777-90.
  18. Угрюмов М.В. Эндокринные функции мозга у взрослых млекопитающих и в онтогенезе. Онтогенез. 2009; 40(1): 19-29.
  19. Lauder J.M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neuroscien. 1993; 16: 233-40.
  20. Chakroborty D., Sarkar C., Baral R., Dasgupta P. S., Basu S. Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J. Clin. Invest. 2008; 118(4): 1380-1389.
  21. Basu S., Sarkar C., Chakroborty D., Nagy J., Mitra R.B., Dasgupta P.S. et al. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res. 2004; 64(16): 5551-5.
  22. Basu S., Nagy J.A., Pal S., Vasile E., Eckelhoefer I.A., Bliss V.S. et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med. 2001; 7(5): 569-74.
  23. Sarkar C., Chakroborty D., Mitra R. B., Banerjee S., Dasgupta P. S., Basu S. et al. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am. J. Physiol. Heart and Circulat. Physiol. 2004; 287(4): 1554-60.
  24. Teunis M.A.T., Kavelaars A., Voest E., Bakker J. M., Ellenbroek B.A., Cools A.R. et al. Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J. 2002; 16(11): 1465-7.
  25. Chakroborty D., Sarkar C., Yu H. et al. Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Krüppel-like factor-2 expression in tumor endothelial cells. Proceed. Nation. Acad. of Sciences of the USA. 2011; 108 (51): 20730-5.
  26. Tilan J., Kitlinska J. Sympathetic Neurotransmitters and Tumor Angiogenesis-Link between Stress and Cancer Progression. J. Oncology. 2010; Article ID 539706
  27. Moreno-Smith M., Lutgendorf S.K., Sood A.K. Impact of stress on cancer metastasis. Fut. Oncology. 2010; 6(12): 1863-81.
  28. Daly C.J., McGrath J.C. Previously unsuspected widespread cellular and tissue distribution of β-adrenoceptors and its relevance to drug action. Trends Pharm. Sci. 2011; 32(4): 219-26.
  29. Dvorak H.F. Angiogenesis: update 2005. J. Thrombosis and Haemostasis. 2005; 3(8): 1835-42.
  30. Yang E.V., Sood A.K., Chen M., Li Y., Eubank T.D., Marsh C.B. et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase MMP-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006; 66(21): 10357-64.
  31. Guo K., Ma Q., Wang L., Hu H., Li J., Zhang D. et al. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol. Rep. 2009; 22(4): 825-30.
  32. Yang E.V., Kim S.J., Donovan E.L., Chen M., Gross A.C., Marketon J.I.W. et al. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav. Immun. 2009; 23(2): 267-75.
  33. Park S.Y., Kang J.H., Jeong K.J., Lee J., Han J.W., Choi W.S. et al. Norepinephrine induces VEGF expression and angiogenesis by a hypoxia inducible factor 1α protein dependent mechanism. Int. J. Cancer. 2011; 128(10): 2306-16.
  34. Pasquier E., Ciccolini J., Carre M., Giacometti S., Fanciullino R., Pouchy C. et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2011; 2(10): 797-809
  35. Melhem-Bertrandt A., Chavez-MacGregor M., Lei X., Brown E.N., Lee R.T., Meric-Bernstam F. et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2011; 29(19): 2645-52.
  36. Dal Monte M., Cammalleri M., Mattei E., Filippi L., Bagnoli P. Protective effects of β1/2 adrenergic receptor deletion in a model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 2015; 56(1): 59-73.
  37. Makhoul I.R., Peleg O., Miller B. et al. Oral propranolol vs placebo for retinopathy of prematurity: a pilot, randomised, double-blind prospective study. Arch. Dis Child. 2013; 98: 565-7.
  38. Filippi L., Cavallaro G., Bagnoli P., Dal Monte M., Fiorini P., Berti E. et al. Propranolol 0.1% eye micro-drops in newborns with retinopathy of prematurity: a pilot clinical trial. Pediatr. Res. 2017; 81(2): 307-14.
  39. Катаргина Л.А., Чеснокова Н.Б., Безнос О.В., Осипова Н.А. Экспериментальное исследование возможности применения мелатонина в лечении и профилактике ретинопатии недоношенных. Вестн. офтальмол. 2016; 132(6): 59-63.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».