PROTEOMIC DIAGNOSTIC TECHNOLOGIES AND THEIR APPLICATION FOR THE REFRACTIVE CORRECTION OF AMETROPIA


Cite item

Full Text

Abstract

Aim. The objective of the present study was the analysis of the tear fluid proteomic status and the eye surface of the patients presenting with ametropia before and after laser-assisted in situ keratomileusis (LASIK). Material and methods. The study included 163 patients (326 eyes) divided into three groups. Group 1 was comprised of 51 adult patients (102 eyes)at the age from 35 to 54 years suffering from high-degree myopia and astigmatism. Group 2 was composed of 26 adult patients (52 eyes) at the age from 35 to 55 years suffering from moderate or high-degree hyperopia and astigmatism. Group 3 consisted of 86 younger patients (172 eyes) at the age from 18 to 54 years suffering from high-degree myopia and astigmatism. The dry eye syndrome and the state pf the cornea were diagnosed with the use of the Lipkof’s test, Schirmer’s test, TBUT test, and corneal fluorescence staining. The antioxidant activity of the tears was estimated based on the results of measurements of peroxyredoxin-6 (PEDX6) expression. Results. The level of PEDX6 expression after LASIK increased in the patients presenting with myopia by 1.4 times and in those with hyperopia by 1.07 times, that is it changed but slightly after the operation and was 6.2 times less pronounced in comparison was the myopes. Conclusion. The study has demonstrated that two methods proved reliable for the evaluation of the tear fluid proteomic status, viz. the Lipkof’s test (1.82 ± 0.2mm, stage 3) and the TBUT test (8.0 ± 1.46 seconds), suggesting the presence of grade 2 dry eye syndrome. Te same refers to the patients of group 2: the results of the Lipkof’s test (1.31 ± 0.2mm) and the TBUT test (8.23 ± 0.87 seconds). The level of antioxidant protection of the ocular surface (PEDX6 expression) depended on the type of the refractive error: in the patients of group 1 before and after LASIK, PEDX6 expression was 4.7 times (13.57 ± 0.83) and 6.2 (19.31 ± 0.71) higher 2.88 ± 0.38 and 3.09 ± 0.47) than in those of group 2, respectively. In addition, it was shown that the level of antioxidant protection of the ocular surface (PEDX6 expression) depended on the age of the patients prior to LASIK: it was 1.3 lower in group 1 than in group 3 (1.35 ± 0.83 and 17.77 ± 1.03 respectively). The clinical significance of the tests for the tear fluid production and proteomic status changed appreciably after LASIK. The TBUT test for diagnostics of dry eye syndrome remained reliable in all the groups.

About the authors

M. A Kovalevskaya

Voronezh State Medical University named after N.N. Burdenko

394000, Voronezh, Russian Federation

I. V Chernikova

Dr. Chernikova Eye Centre

394000, Voronezh, Russian Federation

V. S Podoprigora

Voronezh State Medical University named after N.N. Burdenko

394000, Voronezh, Russian Federation

Mariya I. Sergeeva

Voronezh State Medical University named after N.N. Burdenko

Email: misoph@yandex.ru
assistant, Department of Ophthalmology, N.N. Burdenko Voronezh State Medical University, 394000, Voronezh, Russian Federation 394000, Voronezh, Russian Federation

References

  1. Cosar C.B., Sener A.B. Supracor hyperopia and presbyopia correction: 6-month results. Eur. J. Ophthalmol. 2014; 24(3): 325-9.
  2. Костенёв С.В., Литасова Ю.А., Черных В.В. Исследование изменений формы и толщины роговицы после laser in situ keratomileusis (LASIK). Офтальмохирургия. 2010; (2): 4-7.
  3. Корниловский И.М., Сычев А.Г., Купцова О.Н., Карпов В.Е., Черных Ю.А. Биоптический подход к выбору метода коррекции пресбиопии В кн.: Тезисы докладов 9-го Съезда офтальмологов России. М.; 2010; 91.
  4. Novae G.D. Symposium on dry eye diagnosis and treatment. Ophthalmology World News. 1995; 1(5): 20.
  5. Shimmura S., Shimazaki J., Tsubota K. Results of a population-based questionnaire on the Symptoms and lifestyles associated with dry eyes. Cornea. 1999; 18: 408-11.
  6. Brewitt H., Sistani F. Dry eye disease: the scale of the problem. Surv. Ophthalmol. 2001; 45(2): 199-202.
  7. Uthoff D., Pölzl M., Hepper D., Holland D. A new method of cornea modulation with excimer laser for simultaneous correction of presbyopia and ametropia. Graefes Arch. Clin. Exp. Ophthalmol. 2012; 250: 1649-61.
  8. Ryan A., O’Keefe M. Corneal approach to hyperopic presbyopia treatment: six-month outcomes of a new multifocal excimer laser in situ keratomileusis procedure. J. Cataract Refract. Surg. 2013; 39: 1226-33.
  9. Alió J.L., Chaubard J.J., Caliz A., Sala E., Patel S. Correction of presbyopia by technovision central multifocal LASIK (presbyLASIK). J. Refract. Surg. 2006; 22(5): 453-60.
  10. Kleinstein R.N. Epidemiology of presbyopia. In: Stark L., Obrecht G. (Еds.). Presbyopia. New York: Professional Press; 1987: 12-8.
  11. Holden B.A., Fricke T., Ho S., Wong R., Schlenther G., Cronje S. et al. Global vision impairment due to uncorrected presbyopia. Arch. Ophthalmol. 2008; 126: 1731-9.
  12. Burke A.G., Patel I., Munoz B., Kayongoya A., McHiwa W., Schwarzwalder A.W. et al. Population-based study of presbyopia in rural Tanzania. Ophthalmology. 2006; 113: 723-7.
  13. Рудакова Т.Е. Возрастные особенности аккомодационного аппарата. Особенности эксимер-лазерной коррекции миопии у пациентов старше 40 лет. Коррекция пресбиопии. Рефракционная хирургия и офтальмология. 2001; 1(1): 72-9.
  14. Michael R., Bron A.J. The ageing lens and cataract: a model of normal and pathological ageing. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 2011; 366(1568): 1278-92.
  15. Davson H. Physiology of the Eye. 5th Ed. New York: Pergamon Press; 1990; 754-66.
  16. Gilmartin B.G. The etiology of presbyopia: A summary of the role of lenticular and extralenticular structures. Ophthalm. Physiol. Opt. 1995; 15: 431-7.
  17. Kaufman P.L. Accommodation and presbyopia. Neuromuscular and biophysical aspects. In: Adler’s Physiology of the Eye, (Ed. W.M. Hart) 9th Ed. St. Louis: Mosby - Year Book. 1992; 411-37.
  18. Stark L. Presbyopia in light of accommodation. In: Presbyopia. Eds. L. Stark, G. Obrecht. New York: Professional Press; 1987: 264-7.
  19. Wyatt H.J. Application of a simple mechanical model of accommodation of the aging eye. Vision Res. 1993; 33: 731-8.
  20. Courtoise Y. The capsule of thecrystalline lens. In: Presbyopia. Eds. L. Stark, G. Obrecht. New York: Profesional Press; 1987: 45-53.
  21. Truscott R.J. Presbyopia. Emerging from a blur towards an understanding of the molecular basis for this most common eye condition. Exp. Eye Res. 2009; 88: 241-7.
  22. Sweeney M.H., Truscott R.J. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Exp. Eye Res. 1998; 67: 587-95.

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies