Interactive methods of mathematics teaching in technical universities: the educational and upbrbringing aspects


Cite item

Full Text

Abstract

The relevance of research aimed at identifying promising interactive methods of teaching mathematics to improve the effectiveness of the educational and upbringing process is proved. The need to systematize ideas about interactive methods of teaching mathematics that contribute to improving the quality of education and upbringing of students is determined. Both educational and upbringing resources of interactive teaching are shown, where education is possible through the purposeful formation of personal qualities due to the development of independent creative and critical thinking. It is noted that software products, information and communication technologies, interactive whiteboards, STEM classes, as components of interactive methods, should be used not only for information transfer, but also contribute to the process of accumulation and exchange of knowledge for the formation of the personality, creativity and abilities of the student. It is defined that the project methods, when the trainees interact to solve the set of tasks for a given period of time, individually or in groups, contribute to the development of internal motivation, independent thinking, selfesteem and social responsibility. At the same time, pedagogical efforts should be aimed at reducing interpersonal tension in the group in order to achieve synergistic effect from working in the team, as well as using the element of the game is necessary for the upbringing that contributes to increasing the confidence, motivation and effectiveness of students' education.

About the authors

Elena N. Nikolaeva

Samara State Technical University

Email: nikol867@mail.ru
Senior Lecturer of Higher Mathematics Department. 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Irina P. Egorova

Samara State Technical University

Email: ira.egorova81@yandex.ru
Cand. Phys.-Math. Sci., Associate Professor of Higher Mathematics Department. 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Acelajado M.J. Flipped teaching approach in College Algebra: Cognitive and noncognitive gains. Proc. of the 13th Int. Congress on Mathematical Education. Springer, 2017. 697-698 рр.
  2. Atanasova-Pachemska T. Analysis of math teaching methodology (collection of related good practices in Europe and beyond) [coordinator Pachemska Т.А.]. Stip: University "Goce Delcev", 2017. 151 р.
  3. Borondo J.P. Assessing the acceptance of technological implants (the cyborg): Evidences and challenges. Computers in Human Behavior, 2017. No. 70. 104-112 рр. doi: 10.1016/j.chb.2016.12.063.
  4. Çelik H.K. The Effects of Activity Based Learning on Sixth Grade Students’ Achievement and Attitudes towards Mathematics Activities. EURASIA J. Math., Sci Tech. Ed, 2018. No. 14 (5). 1963-1977 рр. doi: 10.29333/ejmste/85807.
  5. Deivam M. Higher secondary school student’s perception towards scribblar for learning mathematics. International Journal of Humanities and Social Science Research, 2016. Vol. 2. No. 8. 76-79 рр.
  6. Firmin M.W., Genesi D.J. History and Implementation of Classroom Technology. 3rd World Conf. on Learning, Teaching and Educational Leadership (WCLTA-2012). Procedia - Social and Behavioral Sciences. D. J. 2013. 1603-1617 pp. doi: 10.1016/j.sbspro.2013.10.089.
  7. Golji G.G., Dangpe A.K. Activity-based learning strategies (ABLS) as best practice for secondary mathematics teaching and learning. International Advanced Journal of Teaching and Learning, 2016. No. 2 (9). 106-116 рр.
  8. Kennewell S., Tanner H., Jones S., Beauchamp G. Analysing the use of interactive technology to implement interactive teaching. Journal of Computer Assisted Learning, 2008. No. 24(1). 61-73 рр.
  9. Kessel C. Teaching Teachers Mathematics: Research, Ideas, Projects, Evaluation Critical Issues in Mathematics Education Series. Berkeley, California: Mathematical Sciences Research Institute, 2009. Vol. 3. 57 p.
  10. Knoll M. Project method. In: encyclopedia of educational theory and philosophy. Thousend oaks, CA: SAGE, 2014. 665-669 рр.
  11. Macedo I.M. Predicting the acceptance and use of information and communication technology by older adults: An empirical examination of the revised UTAUT2. Computers in Human Behavior, 2017. 35 p. doi: 10.1016/j.chb.2017.06.013.
  12. Murphy J., Chang M., Suaray K. Student performance and attitudes in a collaborative and flipped Linear Algebra course. International Journal of Mathematical Education in Science and Technology, 2016. No. 47 (5). 653-673 рр.
  13. Nicolete P., Bilessimo M.S., Cristiano M.A. Technology Integration Actions in Mathematics teaching in Brazilian Basic Education: Stimulating STEM disciplines. Revista de Educación a Distancia, 2017. Vol. 7. No. 52. 22 p. DOI: http://dx.doi.org/10.6018/red/52/7
  14. Park K.E., Lee S.G. Flipped Learning teaching model design and application for the University’s ‘Linear Algebra’. Journal of the Korea Society of Mathematics Education, Series E: Communications of Mathematical Education, 2016. No. 30 (1). 1-22 рр.
  15. Sessoms D. Interactive instruction: Creating interactive learning environments through tomorrow’s teachers. International Journal of Technology in Teaching and Learning, 2008. No. 4 (2). 86-96 рр.
  16. Stoica A. Using Math Projects in Teaching and Learning. 6th Int. Conf. Edu World 2014 “Education Facing Contemporary World Issues”. Procedia - Social and Behavioral Sciences, 2015. No. 180. 702-708 рр. doi: 10.1016/j.sbspro.2015.02.181.
  17. Su C. The effects of students’ learning anxiety and motivation on the learning achievement in the activity theory based gamified learning environment. EURASIA Journal of Mathematics Science and Technology Education, 2017. No. 13 (5). 1229-1258 рр.
  18. Suki N.M. Students’ intention to use animation and storytelling: using the Utaut model. AIMC 2017 - Asia International Multidisciplinary Conf., 2018. Vol. XL. No. 5. 49-57 рр. doi: 10.15405/epsbs.2018.05.5.
  19. Šumak B., Sorgo A. The acceptance and use of interactive whiteboards among teachers: Differences in UTAUT determinants between preand post-adopters. Computers in Human Behavior, 2016. No. 64. 602-620 рр. doi: 10.1016/j.chb.2016.07.037.
  20. Takker Sh., Subramaniam K. Teacher Knowledge and Learning Insitu: A Case Study of the Long Division Algorithm. Australian Journal of Teacher Education, 2018. Vol. 43. No. 3. 1-20 рр.
  21. Teacher skills and motivation both matter (though many education systems act like they don’t). World Development Report, 2018. 131-144 рр.
  22. Астафьева А.Е. Интерактивное обучение в языковой подготовке студентов направления «Менеджмент» // Научное обозрение: гуманитарные исследования.- 2017. - № 3. - С. 36-39.
  23. Астафьева А.Е. Проектный подход в англоязычной подготовке студентов-нанотехнологов // Научное обозрение: гуманитарные исследования. - 2017. - № 5. - С. 126-129.
  24. Буковский С.Л. Метод и технологии креативного обучения иностранным языкам в неязыковом вузе // Преподаватель XXI век. - 2016. - № 3. - С. 136-144.
  25. Гавров С.Н., Микляева Ю.В., Лопатина О.Г. Воспитание как антропологический феномен. - М.: Форум, 2011. - 240 с.
  26. Зайцева Ж.И., Котляр Л.М., Фоменко Л.Б. Организация самостоятельной работы по математике с помощью современных информационных технологий // Фундаментальные исследования. - 2004. - № 5. - С. 15-19.
  27. Кащук С. М. Технологии Веб 2.0 и межкультурная коммуникация в обучении иностранным языкам // Преподаватель XXI век. - 2016. - № 3. - С. 153-160.
  28. Маланханова А.Е. Использование современных информационно-коммуникационных технологий в обучении переводу экономического дискурса с китайского языка на русский язык // Преподаватель XXI век. - 2016. - № 3. - С. 145-152.
  29. Мелик-Пашаева И.Б., Николаева Е.Н. Проблемное обучение как метод активизации познавательной деятельности студентов - будущих строителей при изучении высшей математики // Традиции и инновации в строительстве и архитектуре. Естественные науки и техносферная безопасность: Сб. статей. - Самара, 2017. - С. 43-46.
  30. Николаева Е.Н., Мелик-Пашаева И.Б. Теоретические основы технологии проблемного обучения // Традиции и инновации в строительстве и архитектуре. Естественные науки и техносферная безопасность: Сб. статей. - Самара, 2017. - С. 47-50.
  31. Николаева Е.Н., Егорова И.П. Роль медиатехнологий в повышении качества подготовки специалистов // Нефтегазовый комплекс: проблемы и инновации. Тезисы III научно-практической конференции с международным участием. - Самара, 2018. - С. 193.

Copyright (c) 2020 Nikolaeva E.N., Egorova I.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies