The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the problem of the linear stability of stationary plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field between two fixed impermeable solid parallel infinite plates with respect to plane perturbations in the Boussinesq approximation and without it. For both cases, we construct some analytical examples of steady plane-parallel shear flows of an ideal density-heterogeneous incompressible fluid and small plane perturbations in the form of normal waves imposed on them, whose asymptotic behavior proves that these perturbations grow in time regardless of whether the well-known result of spectral stability theory (the Miles Theorem) is valid or not.

作者简介

A. Gavril’eva

Larionov Institute of Physical and Technical Problems of the North

编辑信件的主要联系方式.
Email: gav-ann@yandex.ru
俄罗斯联邦, ul. Oktyabr’skaya 1, Yakutsk, 677891

Yu. Gubarev

Lavrent’ev Institute of Hydrodynamics; Novosibirsk State University

编辑信件的主要联系方式.
Email: gubarev@hydro.nsc.ru
俄罗斯联邦, pr. Akad. Lavrent’eva 15, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

M. Lebedev

Yakutsk Scientific Center

编辑信件的主要联系方式.
Email: m.p.lebedev@prez.ysn.ru
俄罗斯联邦, ul. Petrovskogo 2, Yakutsk, 677000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019