The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation
- 作者: Gavril’eva A.A.1, Gubarev Y.G.2,3, Lebedev M.P.4
-
隶属关系:
- Larionov Institute of Physical and Technical Problems of the North
- Lavrent’ev Institute of Hydrodynamics
- Novosibirsk State University
- Yakutsk Scientific Center
- 期: 卷 13, 编号 3 (2019)
- 页面: 460-471
- 栏目: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/213220
- DOI: https://doi.org/10.1134/S1990478919030074
- ID: 213220
如何引用文章
详细
We study the problem of the linear stability of stationary plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field between two fixed impermeable solid parallel infinite plates with respect to plane perturbations in the Boussinesq approximation and without it. For both cases, we construct some analytical examples of steady plane-parallel shear flows of an ideal density-heterogeneous incompressible fluid and small plane perturbations in the form of normal waves imposed on them, whose asymptotic behavior proves that these perturbations grow in time regardless of whether the well-known result of spectral stability theory (the Miles Theorem) is valid or not.
作者简介
A. Gavril’eva
Larionov Institute of Physical and Technical Problems of the North
编辑信件的主要联系方式.
Email: gav-ann@yandex.ru
俄罗斯联邦, ul. Oktyabr’skaya 1, Yakutsk, 677891
Yu. Gubarev
Lavrent’ev Institute of Hydrodynamics; Novosibirsk State University
编辑信件的主要联系方式.
Email: gubarev@hydro.nsc.ru
俄罗斯联邦, pr. Akad. Lavrent’eva 15, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
M. Lebedev
Yakutsk Scientific Center
编辑信件的主要联系方式.
Email: m.p.lebedev@prez.ysn.ru
俄罗斯联邦, ul. Petrovskogo 2, Yakutsk, 677000
补充文件
