The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the problem of the linear stability of stationary plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field between two fixed impermeable solid parallel infinite plates with respect to plane perturbations in the Boussinesq approximation and without it. For both cases, we construct some analytical examples of steady plane-parallel shear flows of an ideal density-heterogeneous incompressible fluid and small plane perturbations in the form of normal waves imposed on them, whose asymptotic behavior proves that these perturbations grow in time regardless of whether the well-known result of spectral stability theory (the Miles Theorem) is valid or not.

Sobre autores

A. Gavril’eva

Larionov Institute of Physical and Technical Problems of the North

Autor responsável pela correspondência
Email: gav-ann@yandex.ru
Rússia, ul. Oktyabr’skaya 1, Yakutsk, 677891

Yu. Gubarev

Lavrent’ev Institute of Hydrodynamics; Novosibirsk State University

Autor responsável pela correspondência
Email: gubarev@hydro.nsc.ru
Rússia, pr. Akad. Lavrent’eva 15, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

M. Lebedev

Yakutsk Scientific Center

Autor responsável pela correspondência
Email: m.p.lebedev@prez.ysn.ru
Rússia, ul. Petrovskogo 2, Yakutsk, 677000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019