Differentiation and integration in functional voxel modeling
- Authors: Tolok A.V1, Tolok N.B1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 5 (2022)
- Pages: 60-67
- Section: Information Technology in Control
- URL: https://journals.rcsi.science/1819-3161/article/view/351141
- DOI: https://doi.org/10.25728/pu.2022.5.5
- ID: 351141
Cite item
Full Text
Abstract
This paper presents a simple method for generating the partial derivatives of a multidimensional function using functional voxel models (FV-models). The general principle of constructing, differentiating, and integrating an FV-model is considered for two-dimensional functions. Integration is understood as obtaining local geometrical characteristics for the antiderivative of a local function with solving the Cauchy problem when finally constructing the FV-model. The direct and inverse differentiation algorithm involves the basic properties of the local geometrical characteristics of functional voxel modeling and the inherent linear approximation principle of the codomain of the algebraic function. Simple computer calculations of this algorithm yield an FV-model suitable for any further algebraic operations. An illustrative example of constructing a functional voxel model of a complex two-dimensional algebraic function is provided. Functional voxel models of partial derivatives are obtained based on this model. These models and the boundary condition at a given point are used to obtain an initial FV-model of a complex algebraic function. The approach is applicable to algebraic functions defined on the domain of various dimensions.
About the authors
A. V Tolok
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Author for correspondence.
Email: tolok_61@mail.ru
Moscow, Russia
N. B Tolok
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: nat_tolok@mail.ru
Moscow, Russia
References
- Рысцов Д. Автоматическое дифференцирование // Abnormal programming, Mathematics. - М.: Habr LLC, 2009. http://habrahabr.ru/post/63055/
- Neidinger, R.D.Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming // SIAM Review. - 2010. - Vol. 52, no. 3. - P. 545-563. doi: 10.1137/080743627
- Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J. Automatic Differentiation in Machine Learning: a Survey // Journal of Machine Learning Research. - 2018. - Vol. 18, art. no. 153. - P. 1--43.
- Ралл Л.Б. Автоматическая дифференциация: методы и приложения / Конспекты лекций по информатике. - 1981. - Т. 120. Springer. - 174 c. ISBN 978-3-540-10861-0.
- Conal, E. The Simple Essence of Automatic Differentiation // Proc. ACM Program. Lang. - 2018. - Vol. 2, iss. ICFP, art. no. 70. - P. 1-29. - DOI: https://doi.org/10.1145/3236765.
- Liao, H., Pearlmutter, B.A., Potluru, V.K., and Woodruff, D.P. Automatic Differentiation of Sketched Regression // Proceedings of the 23rdInternational Conference on Artificial Intelligence and Statistics (AISTATS). - Palermo, Italy, 2020. - PMLR, vol. 108. - P. 4367-4376.
- Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы / 3-е изд., доп. и перераб. - М.: БИНОМ. Лаборатория знаний, 2004. - 636 с. ISBN 5-94774-175-X.
- Березин, И.С., Жидков Н.П. Методы вычислений. - 1962. - Т. I. 2-е изд., стереотипное. - М.: ГИФМЛ. - 464 c.
- Мысовских И.П. Лекции по методам вычислений. - М.: Наука. 1982. - 342 с.
- Толок А.В. Функционально-воксельный метод в компьютерном моделировании. - М.: Физматлит, 2016. - 112 с.
- Толок А.В. Локальная компьютерная геометрия. Учебное пособие. - М.: Ай Пи Ар Медиа, 2022. - 147 с.
Supplementary files



