Modeling Social Attitude to Introducing Epidemic Safety Measures in a Pandemic

封面

如何引用文章

全文:

详细

The COVID-19 pandemic is a global human-scale emergency that has caused many negative effects. To mitigate them, it is necessary to take competent and well-founded organizational measures. Considering infectious diseases from a mathematical point of view allows solving problems in various spheres of society, studying possible scenarios, identifying epidemiological evolution patterns, and proposing intervention strategies and epidemic control options. This paper presents a mathematical model for forecasting opinion dynamics on various socially significant issues, in particular, on the introduction of epidemic safety measures in a pandemic. The model reflects the process of information exchange considering the content of disseminated information and the communicative properties of the social system and its elements (connectivity, susceptibility, and sociability).

作者简介

I. Azhmukhamedov

Astrakhan State University

Email: aim_agtu@mail.ru
Astrakhan, Russia

D. Machueva

Grozny State Oil Technical University

Email: ladyd_7@mail.ru
Grozny, Russia

参考

  1. Асатрян М.Н., Герасимук Э.Р., Логунов Д.Ю. и др. Прогнозирование динамики заболеваемости COVID-19 и планирование мероприятий по вакцинопрофилактике населения Москвы на основе математического моделирования // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2020. – Т. 97, № 4. – С. 289–302. [Asatryan, М.N., Gerasimuk, E.R., Logunov, D.Yu. et al. Predicting the dynamics of Covid-19 incidence and planning preventive vaccination measures for Moscow population based on mathematical modeling // Journal of microbiology, epidemiology and immunobiology. – 2020. – Vol. 97, no. 4. – P. 289–302. (In Russian)]
  2. Vytla, V., Ramakuri, S.K., Peddi, A., et al. Mathematical models for predicting Covid-19 pandemic: a review // Journal of Physics: Conference Series. – 2021. – Vol. 1797. – doi: 10.1088/1742-6596/1797/1/012009.
  3. Rahman, A., Kuddus, M.A., Ip, R.H.L., Bewong, M. A review of COVID-19 modelling strategies in three countries to develop a research framework for regional areas // Viruses. – 2021. – Vol. 13. – Art. no. 2185. – URL: https://doi.org/10.3390/v13112185
  4. Осипов В.Ю., Кулешов С.В., Зайцева А.А., Аксенов А.Ю. Подход к локализации источника эпидемии COVID-19 в России на основе математического моделирования // Информатика и автоматизация. – 2021. – Т. 5, вып. 20. – С. 1065–1089. [Osipov, V.Yu., Kuleshov, S.V., Zaytseva, A.A., Aksenov, A.Yu. Approach for the COVID-19 epidemic source localization in Russia based on mathematical modeling // Informatics and Automation. – 2021. – Vol. 20, no. 5. – P. 1065–1089. (In Russian)]
  5. Криворотько О.И., Кабанихин С.И., Зятьков Н.Ю. и др. Математическое моделирование и прогнозирование COVID-19 в Москве и Новосибирской области // Сибирский журнал вычислительной математики. – 2020. – Т. 23, № 4. – С. 395–414. [Krivorot’ko, O.I., Kabanikhin, S.I., Zyat’kov, N.Yu., et al., Mathematical Modeling and Forecasting of COVID-19 in Moscow and Novosibirsk Region // Numerical Analysis and Applications. – 2020. – Vol. 13, no. 4. – P. 332–348 (In Russian)]
  6. Мартьянова А.Е., Ажмухамедов И.М. SEIRD-модель динамики распространения вирусных инфекций с учетом возникновения новых штаммов // Прикаспийский журнал: управление и высокие технологии. – 2022. – № 4(60). – С. 36–43. [Martyanova, A.E., Azhmukhamedov, I.M.. SEIRD model describing the dynamics of the spread viral infections considering the appearance of new strains // Caspian journal: control and high technologies. – 2022. – No. 4(60). – P. 36–43. (In Russian)]
  7. Захаров В.В., Балыкина Ю.Е. Балансовая модель эпидемии COVID-19 на основе процентного прироста // Информатика и автоматизация. – 2021. – Т. 20, № 5. – С. 1034–1064. [Zakharov, V.V., Balykina, Yu.E. Balance model of COVID-19 epidemic based on percentage growth rate // Informatics and Automation. – 2021. – Vol. 20, no. 5. – P. 1034–1064. (In Russian)]
  8. Макаров В.Л., Бахтизин А.Р., Сушко Е.Д., Агеева А.Ф. Моделирование эпидемии COVID-19 – преимущества агент-ориентированного подхода // Экономические и социальные перемены: факты, тенденции, прогноз. – 2020. – Т. 13, № 4. – С. 58–73. [Makarov, V.L., Bakhtizin, A.R., Sushko, E.D., Ageeva, A.F. COVID-19 epidemic modeling – advantages of an agent-based approach // Economic and social changes: facts, trends, forecast. – 2020. – Vol. 13, no. 4. – P. 58–73. (In Russian)]
  9. Соколовский В.Л., Фурман Г.Б., Полянская Д.А., Фурман Е.Г. Пространственно-временное моделирование эпидемии COVID-19 // Анализ риска здоровью. – 2021. – № 1. – С. 23–37. [Sokolovsky, V.L., Furman, G.B., Polyanskaya, D.A., Furman, E.G. Spatio-temporal modeling of COVID-19 epidemic // Health risk analysis. – 2021. – No. 1. – P. 23–37. (In Russian)]
  10. Uttrani, S., Nanta, B., Sharma, N., Dutt, V. Modeling the impact of the COVID-19 pandemic and socioeconomic factors on global mobility and its effects on mental health / In: Artificial intelligence, machine learning, and mental health in pandemics: a computational approach. 1st edition, Chapter 08. – Amsterdam: Elsevier, 2022. – P. 189–208. – doi: 10.1016/B978-0-323-91196-2.00012-0.
  11. Сорокин М.Ю., Касьянов Е.Д., Рукавишников Г.В. и др. Психологические реакции населения как фактор адаптации к пандемии COVID-19 // Обозрение психиатрии и медицинской психологии. – 2020. – № 2. – С. 87–94. [Sorokin M.Yu., Kasyanov E.D., Rukavishnikov G.V. et al. Psychological reactions of the population as a factor of adaptation to the COVID-19 pandemic // Obozrenie psikhiatrii i meditsinskoi psikhologii. – 2020. – No. 2. – P. 87–94. (In Russian)]
  12. Беляков Н.А., Багненко С.Ф., Рассохин В.В. и др. Эволюция пандемии COVID-19: монография. – СПб.: Балтийский медицинский образовательный центр, 2021. – 409 с. [Belyakov, N.A., Bagnenko, S.F., Rassokhin, V.V. et al. Ehvolyutsiya pandemii COVID-19: monograph. – St. Petersburg: Baltiiskii medi-tsinskii obrazovatel'nyi tsentr, 2021. – 409 s. (In Russian)]
  13. Simoy, M.I., Aparicio, J.P. Socially structured model for COVID-19 pandemic: design and evaluation of control measures // Computational and Applied Mathematics. – 2022. – Vol. 41, no. 1. – DOI: https://doi.org/10.1007/s40314-021-01705-1.
  14. Nowzari, C., Preciado, V.M., Pappas, G.J. Analysis and control of epidemics: a survey of spreading processes on complex networks // IEEE Control Systems Magazine. – 2016. – Vol. 36. – P. 26–46. doi: 10.1109/MCS.2015.2495000.
  15. Merler, S., Ajelli, M., Fumanelli, L. et al. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the eff ectiveness of non-pharmaceutical interventions: a computational modelling analysis // The Lancet Infectious Diseases. – 2015. – Vol. 15, no. 2. – P. 204–211. doi: 10.1016/S1473-3099(14)71074-6.
  16. Gubar, E., Taynitskiy, V., Fedyanin, D., Petrov, I. Hierarchical epidemic model on structured population: diffusion patterns and control policies // Computation. – 2022. – Vol. 10, no. 31. – doi: 10.3390/computation10020031
  17. Fenichel, E.P. Economic considerations for social distancing and behavioral based policies during an epidemic // J. Health Econ. – 2013. – Vol. 32, no. 2. – P. 440–451. –doi: 10.1016/j.jhealeco.2013.01.002
  18. Flache, A., Mäs, M., Feliciani, T., et al. Models of social influence: towards the next frontiers // Journal of Artificial Societies and Social Simulation. – 2017. – Vol. 20, no. 4. – URL: http://jasss.soc.surrey.ac.uk/20/4/2.html.
  19. Губанов Д.А., Петров И.В., Чхартишвили А.Г. Многомерная модель динамики мнений в социальных сетях: индексы поляризации // Проблемы управления. – 2020. – № 3. – С. 26–33. [Gubanov, D.A., Petrov, I.V., Chkhartishvili, A.G. Multidimensional model of opinion dynamics in social networks: polarization indices // Control Sciences. – 2020. – No. 3. – P. 26–33. (In Russian)]
  20. Zhang, L., Li, K., Liu, J. An information diffusion model based on explosion shock wave theory on online social networks // Appl. Sci. – 2021. – No. 11. – URL: https://doi.org/10.3390/app11219996.
  21. Gubanov, D.A. A study of a complex model of opinion dynamics in social networks // Journal of Physics: Conference Series. Moscow: IOP Publishing Ltd. – 2021. – Vol. 1740. – P. 1–6. – URL: https://iopscience.iop.org/article/10.1088/1742-6596/1740/1/012040/pdf.
  22. Gubanov, D.A., Kozitsin, I.V., Chkhartishvili, A.G. Face mask perception during the COVID-19 pandemic: an observational study of Russian online social network VKontakte // Advances in Systems Science and Applications. – 2021. – Vol. 21, no. 3. – P. 91–100.
  23. Milov, O., Yevseiev, S., Milevskyi, S., et al. Critical points of information influence in social networks // III International Scientific and Practical Conference «Information Security And Information Technologies». – Kirovograd, 2021. – URL: https://ceur-ws.org/Vol-3200/paper18.pdf.
  24. Al-Oraiqat, A., Ulichev, O.S., Meleshko, Ye., et al. Modeling strategies for information influence dissemination in social networks // Journal of Ambient Intelligence and Humanized Computing. – 2022. – No. 13(91). – P. 2463–2477. – doi: 10.1007/s12652-021-03364-w.
  25. Perra, N., Rocha, L.E. Modelling opinion dynamics in the age of algorithmic personalization // Scientific reports. – 2019. – Vol. 9. – Art. no. 7261.
  26. Parsegov, S.E., Proskurnikov, A.V., Tempo, R., and Friedkin. N.E. Novel multidimensional models of opinion dynamics in social networks // IEEE Transactions on Automatic Control. – 2017. – Vol. 62, no. 5. – P. 2270–2285.
  27. Kozitsin, I.V. Formal models of opinion formation and their application to real data: evidence from online social networks // The Journal of Mathematical Sociology. – 2020. – Vol. 46. – P. 120–147. – doi: 10.1080/0022250X.2020.1835894.
  28. Azhmukhamedov, I.M., Machueva, D.A., Alisultanova, E.D. Mathematical modeling of information management of social systems in emergencies // Advances in Economics, Business and Management Research. – 2020. – Vol. 156. – P. 695–701.

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».