Modeling Social Attitude to Introducing Epidemic Safety Measures in a Pandemic
- Авторлар: Azhmukhamedov I.M1, Machueva D.A2
-
Мекемелер:
- Astrakhan State University
- Grozny State Oil Technical University
- Шығарылым: № 5 (2023)
- Беттер: 68-77
- Бөлім: Control in Social and Economic Systems
- URL: https://journals.rcsi.science/1819-3161/article/view/291670
- DOI: https://doi.org/10.25728/pu.2023.5.5
- ID: 291670
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
I. Azhmukhamedov
Astrakhan State University
Email: aim_agtu@mail.ru
Astrakhan, Russia
D. Machueva
Grozny State Oil Technical University
Email: ladyd_7@mail.ru
Grozny, Russia
Әдебиет тізімі
- Асатрян М.Н., Герасимук Э.Р., Логунов Д.Ю. и др. Прогнозирование динамики заболеваемости COVID-19 и планирование мероприятий по вакцинопрофилактике населения Москвы на основе математического моделирования // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2020. – Т. 97, № 4. – С. 289–302. [Asatryan, М.N., Gerasimuk, E.R., Logunov, D.Yu. et al. Predicting the dynamics of Covid-19 incidence and planning preventive vaccination measures for Moscow population based on mathematical modeling // Journal of microbiology, epidemiology and immunobiology. – 2020. – Vol. 97, no. 4. – P. 289–302. (In Russian)]
- Vytla, V., Ramakuri, S.K., Peddi, A., et al. Mathematical models for predicting Covid-19 pandemic: a review // Journal of Physics: Conference Series. – 2021. – Vol. 1797. – doi: 10.1088/1742-6596/1797/1/012009.
- Rahman, A., Kuddus, M.A., Ip, R.H.L., Bewong, M. A review of COVID-19 modelling strategies in three countries to develop a research framework for regional areas // Viruses. – 2021. – Vol. 13. – Art. no. 2185. – URL: https://doi.org/10.3390/v13112185
- Осипов В.Ю., Кулешов С.В., Зайцева А.А., Аксенов А.Ю. Подход к локализации источника эпидемии COVID-19 в России на основе математического моделирования // Информатика и автоматизация. – 2021. – Т. 5, вып. 20. – С. 1065–1089. [Osipov, V.Yu., Kuleshov, S.V., Zaytseva, A.A., Aksenov, A.Yu. Approach for the COVID-19 epidemic source localization in Russia based on mathematical modeling // Informatics and Automation. – 2021. – Vol. 20, no. 5. – P. 1065–1089. (In Russian)]
- Криворотько О.И., Кабанихин С.И., Зятьков Н.Ю. и др. Математическое моделирование и прогнозирование COVID-19 в Москве и Новосибирской области // Сибирский журнал вычислительной математики. – 2020. – Т. 23, № 4. – С. 395–414. [Krivorot’ko, O.I., Kabanikhin, S.I., Zyat’kov, N.Yu., et al., Mathematical Modeling and Forecasting of COVID-19 in Moscow and Novosibirsk Region // Numerical Analysis and Applications. – 2020. – Vol. 13, no. 4. – P. 332–348 (In Russian)]
- Мартьянова А.Е., Ажмухамедов И.М. SEIRD-модель динамики распространения вирусных инфекций с учетом возникновения новых штаммов // Прикаспийский журнал: управление и высокие технологии. – 2022. – № 4(60). – С. 36–43. [Martyanova, A.E., Azhmukhamedov, I.M.. SEIRD model describing the dynamics of the spread viral infections considering the appearance of new strains // Caspian journal: control and high technologies. – 2022. – No. 4(60). – P. 36–43. (In Russian)]
- Захаров В.В., Балыкина Ю.Е. Балансовая модель эпидемии COVID-19 на основе процентного прироста // Информатика и автоматизация. – 2021. – Т. 20, № 5. – С. 1034–1064. [Zakharov, V.V., Balykina, Yu.E. Balance model of COVID-19 epidemic based on percentage growth rate // Informatics and Automation. – 2021. – Vol. 20, no. 5. – P. 1034–1064. (In Russian)]
- Макаров В.Л., Бахтизин А.Р., Сушко Е.Д., Агеева А.Ф. Моделирование эпидемии COVID-19 – преимущества агент-ориентированного подхода // Экономические и социальные перемены: факты, тенденции, прогноз. – 2020. – Т. 13, № 4. – С. 58–73. [Makarov, V.L., Bakhtizin, A.R., Sushko, E.D., Ageeva, A.F. COVID-19 epidemic modeling – advantages of an agent-based approach // Economic and social changes: facts, trends, forecast. – 2020. – Vol. 13, no. 4. – P. 58–73. (In Russian)]
- Соколовский В.Л., Фурман Г.Б., Полянская Д.А., Фурман Е.Г. Пространственно-временное моделирование эпидемии COVID-19 // Анализ риска здоровью. – 2021. – № 1. – С. 23–37. [Sokolovsky, V.L., Furman, G.B., Polyanskaya, D.A., Furman, E.G. Spatio-temporal modeling of COVID-19 epidemic // Health risk analysis. – 2021. – No. 1. – P. 23–37. (In Russian)]
- Uttrani, S., Nanta, B., Sharma, N., Dutt, V. Modeling the impact of the COVID-19 pandemic and socioeconomic factors on global mobility and its effects on mental health / In: Artificial intelligence, machine learning, and mental health in pandemics: a computational approach. 1st edition, Chapter 08. – Amsterdam: Elsevier, 2022. – P. 189–208. – doi: 10.1016/B978-0-323-91196-2.00012-0.
- Сорокин М.Ю., Касьянов Е.Д., Рукавишников Г.В. и др. Психологические реакции населения как фактор адаптации к пандемии COVID-19 // Обозрение психиатрии и медицинской психологии. – 2020. – № 2. – С. 87–94. [Sorokin M.Yu., Kasyanov E.D., Rukavishnikov G.V. et al. Psychological reactions of the population as a factor of adaptation to the COVID-19 pandemic // Obozrenie psikhiatrii i meditsinskoi psikhologii. – 2020. – No. 2. – P. 87–94. (In Russian)]
- Беляков Н.А., Багненко С.Ф., Рассохин В.В. и др. Эволюция пандемии COVID-19: монография. – СПб.: Балтийский медицинский образовательный центр, 2021. – 409 с. [Belyakov, N.A., Bagnenko, S.F., Rassokhin, V.V. et al. Ehvolyutsiya pandemii COVID-19: monograph. – St. Petersburg: Baltiiskii medi-tsinskii obrazovatel'nyi tsentr, 2021. – 409 s. (In Russian)]
- Simoy, M.I., Aparicio, J.P. Socially structured model for COVID-19 pandemic: design and evaluation of control measures // Computational and Applied Mathematics. – 2022. – Vol. 41, no. 1. – DOI: https://doi.org/10.1007/s40314-021-01705-1.
- Nowzari, C., Preciado, V.M., Pappas, G.J. Analysis and control of epidemics: a survey of spreading processes on complex networks // IEEE Control Systems Magazine. – 2016. – Vol. 36. – P. 26–46. doi: 10.1109/MCS.2015.2495000.
- Merler, S., Ajelli, M., Fumanelli, L. et al. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the eff ectiveness of non-pharmaceutical interventions: a computational modelling analysis // The Lancet Infectious Diseases. – 2015. – Vol. 15, no. 2. – P. 204–211. doi: 10.1016/S1473-3099(14)71074-6.
- Gubar, E., Taynitskiy, V., Fedyanin, D., Petrov, I. Hierarchical epidemic model on structured population: diffusion patterns and control policies // Computation. – 2022. – Vol. 10, no. 31. – doi: 10.3390/computation10020031
- Fenichel, E.P. Economic considerations for social distancing and behavioral based policies during an epidemic // J. Health Econ. – 2013. – Vol. 32, no. 2. – P. 440–451. –doi: 10.1016/j.jhealeco.2013.01.002
- Flache, A., Mäs, M., Feliciani, T., et al. Models of social influence: towards the next frontiers // Journal of Artificial Societies and Social Simulation. – 2017. – Vol. 20, no. 4. – URL: http://jasss.soc.surrey.ac.uk/20/4/2.html.
- Губанов Д.А., Петров И.В., Чхартишвили А.Г. Многомерная модель динамики мнений в социальных сетях: индексы поляризации // Проблемы управления. – 2020. – № 3. – С. 26–33. [Gubanov, D.A., Petrov, I.V., Chkhartishvili, A.G. Multidimensional model of opinion dynamics in social networks: polarization indices // Control Sciences. – 2020. – No. 3. – P. 26–33. (In Russian)]
- Zhang, L., Li, K., Liu, J. An information diffusion model based on explosion shock wave theory on online social networks // Appl. Sci. – 2021. – No. 11. – URL: https://doi.org/10.3390/app11219996.
- Gubanov, D.A. A study of a complex model of opinion dynamics in social networks // Journal of Physics: Conference Series. Moscow: IOP Publishing Ltd. – 2021. – Vol. 1740. – P. 1–6. – URL: https://iopscience.iop.org/article/10.1088/1742-6596/1740/1/012040/pdf.
- Gubanov, D.A., Kozitsin, I.V., Chkhartishvili, A.G. Face mask perception during the COVID-19 pandemic: an observational study of Russian online social network VKontakte // Advances in Systems Science and Applications. – 2021. – Vol. 21, no. 3. – P. 91–100.
- Milov, O., Yevseiev, S., Milevskyi, S., et al. Critical points of information influence in social networks // III International Scientific and Practical Conference «Information Security And Information Technologies». – Kirovograd, 2021. – URL: https://ceur-ws.org/Vol-3200/paper18.pdf.
- Al-Oraiqat, A., Ulichev, O.S., Meleshko, Ye., et al. Modeling strategies for information influence dissemination in social networks // Journal of Ambient Intelligence and Humanized Computing. – 2022. – No. 13(91). – P. 2463–2477. – doi: 10.1007/s12652-021-03364-w.
- Perra, N., Rocha, L.E. Modelling opinion dynamics in the age of algorithmic personalization // Scientific reports. – 2019. – Vol. 9. – Art. no. 7261.
- Parsegov, S.E., Proskurnikov, A.V., Tempo, R., and Friedkin. N.E. Novel multidimensional models of opinion dynamics in social networks // IEEE Transactions on Automatic Control. – 2017. – Vol. 62, no. 5. – P. 2270–2285.
- Kozitsin, I.V. Formal models of opinion formation and their application to real data: evidence from online social networks // The Journal of Mathematical Sociology. – 2020. – Vol. 46. – P. 120–147. – doi: 10.1080/0022250X.2020.1835894.
- Azhmukhamedov, I.M., Machueva, D.A., Alisultanova, E.D. Mathematical modeling of information management of social systems in emergencies // Advances in Economics, Business and Management Research. – 2020. – Vol. 156. – P. 695–701.
Қосымша файлдар
