Asymptotic analysis of a multi-flow heterogeneous qs under conditions of extremely rare state changes manager of input flows markov chains

Cover Page

Cite item

Abstract

Currently, multimodal systems are gaining popularity with the development of multimodal interfaces. Multimodal streams are integrated streams of different types, including the transmission of voice, text data and video, so it is logical to use non-Poisson models to describe them. As a mathematical model of a multimodal servicing system, a multi-threaded heterogeneous queuing system with flows changing their intensity depending on the states of the Markov random environment is considered. Incoming requests from various flows are serviced during an exponentially distributed random time with parameters determined by the type of flow. Expressions are obtained for finding the maximum values of the main probabilistic characteristics of the number of occupied devices of each type. Asymptotic research is carried out under the condition of extremely rare changes in the states of the environment. The form of the multidimensional asymptotic characteristic function is obtained. It is proven that one-dimensional (marginal) stationary probability distributions of the number of occupied devices of each type are weighted sums of Poisson distributions. A numerical analysis of the range of applicability of the obtained approximation was carried out.

About the authors

Svetlana Petrovna Moiseeva

National Research Tomsk State University

Email: smoiseeva@mailt.ru
Tomsk

Ekaterina Vladimirovna Pankratova

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: pankate@gmail.com
Moscow

References

  1. БАСОВ О.О., ПАКУЛОВА Е.А., САИТОВ И.А. Методо-логические основы построения интеллектуальных инфо-коммуникационных систем. – Орёл: Академия ФСО Рос-сии, 2020. – 272 с.
  2. ВИШНЕВСКИЙ В.М., ДУДИН А.Н., КЛИМЕНОК В.И. Сто¬хастические системы с коррелированными потока-ми. Теория и применение в телекоммуникационных се-тях. – М.: Рекламно-издательский центр "ТЕХНОСФЕ-РА", 2018. – 564 с.
  3. ГОРБАТЕНКО А.Е. Асимптотики произвольного поряд-ка для системы МАР|GI|∞ в условии растущей интен-сивности входящего потока // Вестник Томского госу-дарственного университета. Управление, вычислитель-ная техника и информатика. – 2010. – №2(11). – С. 35–43.
  4. МАТВЕЕВ Ю.Н. Технологии биометрической идентифи-кации личности по голосу и другим модальностям // Вестник Московского государственного технического университета им. Н.Э. Баумана. – 2012. – №3(3). –С. 5.
  5. НАЗАРОВ А.А., МОИСЕЕВА С.П. Методы асимптоти-ческого анализа в теории массового обслуживания. – Томск: Изд-во НТЛ, 2006. – 112 с.
  6. НАУМОВ В.А., САМУЙЛОВ К.Е. О моделировании си-стем массового обслуживания с множественными ре-сурсами // Вестник РУДН. Серия: Математика, информа-тика, физика. – 2014. – №3. – C. 60–64.
  7. ЭЛЬСГОЛЬЦ Л.Э. Дифференциальные уравнения и вари-ационное исчисление. – М.: Наука, 1969. – 424 с.
  8. LUCANTONI D.M. New results on the single server queue with a batch Markovian arrival process // Stochastic Models. – 1991. – Vol. 7. – P. 1–46.
  9. NEUTS M.F., He Q.-M. Markov arrival process with marked transitions // Stochastic Processes and Applications. – 1998. – Vol. 74. – P. 37–52.
  10. SINGH V.P. Markovian queues with three heterogeneous servers // AIIE Transactions. – 1971. – Vol. 3 (1). – P.45–48.
  11. SINGH V.P. Two-server Markovian queues with balking: Heterogeneous vs. homogeneous servers // Operations Re-search. – 1970. – No. 18(1). – P. 145–159.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).