卷 23, 编号 1 (2023)

Articles

The Lezanski – Polyak – Lojasiewicz inequality and the convergence of the gradient projection algorithm

Balashov M.

摘要

We consider the Lezanski – Polyak – Lojasiewicz inequality for a real-analytic function on a real-analytic compact manifold without boundary in finite-dimensional Euclidean space. This inequality emerged in 1963 independently in works of three authors: Lezanski and Lojasiewicz from Poland and Polyak from the USSR. The inequality is appeared to be a very useful tool in the convergence analysis of the gradient methods, firstly in unconstrained optimization and during the past few decades in problems of constrained optimization. Basically, it is applied for a smooth in a certain sense function on a smooth in a certain sense manifold. We propose the derivation of the inequality from the error bound condition of the power type on a compact real-analytic manifold. As an application, we prove the convergence of the gradient projection algorithm of a real analytic function on a real analytic compact manifold without boundary. Unlike known results, our proof gives explicit dependence of the error via parameters of the problem: the power in the error bound condition and the constant of proximal smoothness first of all. Here we significantly use a technical fact that a smooth compact manifold without boundary is a proximally smooth set.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):4-10
pages 4-10 views

Application of the generalized degree method for constructing solutions of the quaternion variant of the Cauchy – Riemann system

Loshkareva E., Gladyshev Y., Malyshev E.

摘要

This article indicates one of the ways to solve the generalized Cauchy – Riemann system for quaternionic functions in an eight-dimensional space. In previous works, some classes of solutions of this system were studied and it was stated that it is possible to use the method of generalized degrees to construct solutions of this system of differential equations. It is shown that the solution of the problem can be reduced to finding two arbitrary quaternionic harmonic functions in an eight-dimensional space. All 8 components of these functions $\varphi ,\psi$ must be harmonic functions, that is, be twice continuously differentiable over all 8 real variables $x_i$, $y_i$, where $i = \overline {1,4} $ solutions of the Laplace equation. In this article, the parametric method of generalized degrees is considered, which is applicable to individual equations of the second and higher orders.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):11-23
pages 11-23 views

Function correction and Lagrange – Jacobi type interpolation

Novikov V.

摘要

It is well-known that the Lagrange interpolation based on the Chebyshev nodes may be divergent everywhere (for arbitrary nodes, almost everywhere), like the Fourier series of a summable function. On the other hand, any measurable almost everywhere finite function can be “adjusted” in a set of an arbitrarily small measure such that its Fourier series will be uniformly convergent. The question arises whether the class of continuous functions has a similar property with respect to any interpolation process. In the present paper, we prove that there exists the matrix of nodes $\mathfrak{M}_\gamma$ arbitrarily close to the Jacoby matrix $\mathfrak{M}^{(\alpha,\beta)}$, $\alpha,\beta>-1$ with the following property: any function $f\in{C[-1,1]}$ can be adjusted in a set of an arbitrarily small measure such that interpolation process of adjusted continuous function $g$ based on the nodes $\mathfrak{M}_\gamma$ will be uniformly convergent to $g$ on $[a,b]\subset(-1,1)$.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):24-35
pages 24-35 views

A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method

Sevastianov L., Lovetskiy K., Kulyabov D.

摘要

A new algorithm for the numerical solution of one-dimensional Cauchy problems and Poisson equations is implemented. The algorithm is based on the collocation method and representation of the solution as an expansion in Chebyshev polynomials. It is proposed instead of the usual approach, which consists in combining all known conditions — differential (the equation itself) and initial / boundary — into one system of approximate linear algebraic equations, to go to the method of solving the problem in several separate stages. First, spectral coefficients are identified that determine the “general” solution of the original problem. The collocation method determines the interpolation coefficients of the derivative of the solution, and thus the expansion coefficients of the solution itself (except for the initial ones). At this stage, the choice of a good basis with discrete orthogonality makes it possible to use very efficient algorithms for finding the desired coefficients. The complexity of reducing the matrix of a system of linear algebraic equations to a diagonal form becomes equivalent to the complexity of multiplying the Chebyshev matrix of coefficients by the vector of the right side of the system. Then the expansion coefficients of the solution itself (except for the first one or two) are obtained by multiplying the known tridiagonal integration matrix (inverse to the Chebyshev differentiation matrix) by the vector of interpolation coefficients of the derivative. At the last stage, considering the initial/boundary conditions select a “particular” desired solution, unambiguously redefining the missing coefficients of the desired expansion.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):36-47
pages 36-47 views

On the application of the qualitative theory of differential equations to a problem of heat and mass transfer

Turtin D., Stepovich M., Kalmanovich V.

摘要

The possibilities of applying the qualitative theory of differential equations to one problem of heat and mass transfer in multilayer planar semiconducting structures are studied. The consideration is carried out on the example of a mathematical model of a stationary process of diffusion of nonequilibrium minority  charge carriers generated by a wide excitation source. The use of a wide source of external influence makes it possible to reduce modeling problems to one-dimensional ones and describe these mathematical models by ordinary differential equations. These are the processes in various nanosystems exposed to wide beams of charged particles or electromagnetic radiation. The paper reviews the results of recent studies of such models. The main object of study was the questions of the correctness of the considered mathematical models, special attention is paid to the mathematical assessment of the influence of external factors on the state of the object under study. Previously, the methods of the qualitative theory of differential equations, in our case, the assessment of the influence of external influence on the distribution of nonequilibrium minority charge carriers as a result of their diffusion in a semiconductor, in combination with the consideration of the uniqueness of the solution of differential equations of heat and mass transfer and the correctness of the mathematical models used, were considered very rarely, and for wide electron beams, a quantitative analysis of such problems has not previously been carried out at all. In the present work, the main attention is paid to the influence of the right side of the differential equation, the excitation function of minority charge carriers, on the solution of the differential diffusion equation, which describes the distribution of nonequilibrium charge carriers that have diffused in each layer of such a structure. The uniqueness of the solution of the problem under consideration and the continuous dependence of the solution on the right side of the differential equation are proved. Estimates are obtained for the influence of external factors on the diffusion of generated carriers in each layer of a multilayer planar semiconductor structure.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):48-57
pages 48-57 views

The Riemann problem on a ray for generalized analytic functions with a singular line

Shabalin P., Faizov R.

摘要

In this paper, we study an inhomogeneous Riemann boundary value problem with a finite index and a boundary condition on a ray for a generalized Cauchy – Riemann equation with a singular coefficient. For the solution of this problem, we derived a formula for the general solution of the generalized Cauchy – Riemann equation under constraints that led to an infinite index of logarithmic order of the accompanying problem for analytical functions. We have obtained a formula for the general solution of the Riemann problem and conducted a complete study of the existence and the number of solutions of a boundary value problem for generalized analytic functions with a singular line.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):58-69
pages 58-69 views

On the physical equations of a deformable body at the loading step with implementation based on a mixed FEM

Gureeva N., Kiseleva R., Klochkov Y., Nikolaev A., Ryabukha V.

摘要

To obtain the deformation matrix of the prismatic finite element at the loading step, taking into account the physical nonlinearity, three variants of physical equations were used. In the first variant, the defining equations of the theory of plastic flow are implemented, according to which the increment of deformations is divided into elastic and plastic parts. The increment of elastic deformations is related to the increments of stresses by Hooke's law. The relationship of plastic strain increments with stress increments is determined based on the hypothesis of the proportionality of the components of the plastic strain increment tensor to the components of the stress deviator. In the second variant, the components of the plastic strain increment tensor are obtained on the basis of the proposed hypothesis about the proportionality of these components to the components of the stress increment deviator at the loading step. In this variant, as well as in the first variant, the hypothesis of incompressibility of the material during plastic deformation is accepted. In the third variant, the defining equations at the loading step were obtained on the basis of the proposed hypothesis about the proportionality of the components of the deformation increment deviator to the components of the stress increment deviator without dividing the deformation increments into elastic and plastic parts. The proportionality coefficient turned out to be a function of the chord modulus of the deformation diagram. The hypothesis of incompressibility of the material during plastic deformation was not accepted, but the dependence between the first invariants of strain tensors and stress tensors obtained from the experiment was realized. For comparison with the first and second variants of the defining equations, this dependence between the first invariants of strain and stress tensors is determined by the elastic deformation formula. A prismatic element with triangular bases is adopted as the finite element. Displacement increments and stress increments are taken as nodal unknowns. Approximation of the desired values of the finite element method, in a mixed formulation through nodal values, was carried out using linear functions. The stress-strain state matrix is presented on the basis of a mixed functional obtained from the physical expression of the equality of the possible and actual work of external and internal forces at the loading step with the replacement of the actual work of internal forces by the difference of the full and additional work of internal forces. The calculation example shows an adequate correspondence in the calculation results based on the considered variants of the physical relations and the preference of the third variant of the defining equations of the theory of plasticity is noted.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):70-82
pages 70-82 views

Influence of a polymeric infiltrant on the density of enamel white spot lesions

Sadyrin E.

摘要

In modern dental practice,  treatment of early stages of caries is possible using minimally invasive intervention. In this work, using X-ray computed microtomography (micro-CT), an ex vivo non-destructive study of the density of white spot lesions was carried out before and after the application of a polymer infiltrant. The use of a calibration phantom during microtomography of samples, as well as the technique of segmenting regions of interest on caries foci after reconstruction of microtomograms of teeth, made it possible to study the quantitative effect of the infiltrant on pathologically altered enamel.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):83-94
pages 83-94 views

The new algorithm of quasi-optimal reorientation of a spacecraft

Sapunkov Y., Molodenkov A.

摘要

The classical problem of optimal control of the attitude maneuver of a spacecraft as a rigid body of arbitrary dynamic configuration under arbitrary boundary conditions for the angular position and angular velocity of a spacecraft without restriction on the control vector function and with a fixed transition time is considered. As a criterion of optimality, the functional of the energy spent on the rotation of a spacecraft is used. Within the bounds of the Poinsot concept describing arbitrary angular motion of a rigid body in terms of generalized conical motion, a modification of the problem of optimal control of the angular motion of a spacecraft is carried out and its trajectory is given in this class of motions. At the same time, the generality of the original problem is practically not violated, since the known exact solutions to the classical problem of optimal angular motion of a dynamically symmetric spacecraft in cases of plane rotation or regular precession and similar solutions of the modified problem completely coincide; in other cases, in numerical calculations of the classical and modified problems, the discrepancy between the values of the optimization functional is no more than a few percent, including spacecraft rotations at large angles. Therefore, the proposed solution of the modified problem can be used as quasi-optimal with respect to the classical problem. Explicit expressions for the quaternion of the orientation and the vector of angular velocity of a spacecraft are given, a formula for the vector of the control moment of a spacecraft is obtained based on the solution of the inverse problem of the dynamics of a rigid body. The quasi-optimal algorithm for optimal rotation of a spacecraft is given. Numerical examples showing the proximity of solutions to the classical and modified problems of optimal reorientation of a spacecraft are given.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):95-112
pages 95-112 views

Method of automatic search for the structure and parameters of neural networks for solving information processing problems

Obukhov A.

摘要

Neural networks are actively used in solving various applied problems of data analysis, processing and generation. When using them, one of the difficult stages is the selection of the structure and parameters of neural networks (the number and types of layers of neurons, activation functions, optimizers, and so on) that provide the greatest accuracy and, therefore, the success of solving the problem. Currently, this issue is being solved by analytical selection of the neural network architecture by a researcher or software developer. Existing automatic tools (AutoKeras, AutoGAN, AutoSklearn, DEvol and others) are not universal and functional enough. Therefore, within the framework of this work, a method of automatic search for the structure and parameters of neural networks of various types (multilayer dense, convolutional, generative-adversarial, autoencoders, and others) is considered for solving a wide class of problems. The formalization of the method and its main stages are presented. The approbation of the method is considered, which proves its effectiveness in relation to the analytical solution in the selection of the architecture of the neural network. A comparison of the method with existing analogues is carried out, its advantage is revealed in terms of the accuracy of the formed neural networks and the time to find a solution. The research results can be used to solve a large class of data processing problems for which it is required to automate the selection of the structure and parameters of a neural network.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):113-125
pages 113-125 views

Information processing for the decision support system for fire monitoring of forest areas

Sorokin A., Maltseva N., Kutuzov D., Osovsky A.

摘要

The purpose of our study was to formulate provisions for obtaining an integral assessment characterizing the rating of forest areas in terms of fire hazard. We obtained this estimate based on the aggregation of many parameters characterizing climatic conditions and factors that take into account anthropogenic influence in a given area of the forest. Considering the heterogeneity of such parameters, we used the methods of fuzzy inference and the theory of fuzzy sets to aggregate them. The complex for determining the assessment of the forest area is implemented in the form of a hierarchical fuzzy inference system. We investigated the process of functioning of the formed complex and found that its output pattern is predominantly stepwise. This result makes it possible to classify the analyzed forest areas into states groups. Further studies of the classes of states formed by us by the methods of cluster analysis make it possible to identify areas with similar characteristics. The use of the classification results makes it possible to rank forest areas according to the order of preventive or preparatory measures to reduce  fire hazard or increase  responsiveness in case of a fire. The results obtained by us are aimed at using in decision support systems for the management of forests and other types of adjacent territories.
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(1):126-138
pages 126-138 views
##common.cookie##