On the application of the qualitative theory of differential equations to a problem of heat and mass transfer

Cover Page

Cite item

Full Text

Abstract

The possibilities of applying the qualitative theory of differential equations to one problem of heat and mass transfer in multilayer planar semiconducting structures are studied. The consideration is carried out on the example of a mathematical model of a stationary process of diffusion of nonequilibrium minority  charge carriers generated by a wide excitation source. The use of a wide source of external influence makes it possible to reduce modeling problems to one-dimensional ones and describe these mathematical models by ordinary differential equations. These are the processes in various nanosystems exposed to wide beams of charged particles or electromagnetic radiation. The paper reviews the results of recent studies of such models. The main object of study was the questions of the correctness of the considered mathematical models, special attention is paid to the mathematical assessment of the influence of external factors on the state of the object under study. Previously, the methods of the qualitative theory of differential equations, in our case, the assessment of the influence of external influence on the distribution of nonequilibrium minority charge carriers as a result of their diffusion in a semiconductor, in combination with the consideration of the uniqueness of the solution of differential equations of heat and mass transfer and the correctness of the mathematical models used, were considered very rarely, and for wide electron beams, a quantitative analysis of such problems has not previously been carried out at all. In the present work, the main attention is paid to the influence of the right side of the differential equation, the excitation function of minority charge carriers, on the solution of the differential diffusion equation, which describes the distribution of nonequilibrium charge carriers that have diffused in each layer of such a structure. The uniqueness of the solution of the problem under consideration and the continuous dependence of the solution on the right side of the differential equation are proved. Estimates are obtained for the influence of external factors on the diffusion of generated carriers in each layer of a multilayer planar semiconductor structure.

About the authors

Dmitry V. Turtin

Ivanovo State University;

39 Yermak St., Ivanovo 153025, Russia

Mikhail Adol'fovich Stepovich

Kaluga State University named after K. E. Tsiolkovski

26 Stepan Razin St., Kaluga 248023, Russia

Veronika V. Kalmanovich

Kaluga State University named after K. E. Tsiolkovski

26 Stepan Razin St., Kaluga 248023, Russia

References

  1. Нахушев А. М. О некоторых новых краевых задачах для гиперболических уравнений и уравнений смешанного типа // Дифференциальные уравнения. 1969. Т. 5, № 1. С. 44–59.
  2. Нахушев А. М. Новая краевая задача для одного вырождающегося гиперболического уравнения // Доклады АН СССР. 1969. Т. 187, № 4. C. 736–739.
  3. Нахушев А. М. О нелокальных краевых задачах со смещением и их связи с нагруженными уравнениями // Дифференциальные уравнения. 1985. Т. 21, № 1. С. 92–101.
  4. Нахушев А. М. Задачи со смещением для уравнений в частных производных. Москва : Наука, 2006. 287 с.
  5. Немыцкий В. В., Степанов В. В. Качественная теория дифференциальных уравнений. Москва ; Лениград : ГИТТЛ, 1947. 448 с.
  6. Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников: учебное пособие. Москва : Наука, 1990. 686 с.
  7. Смит Р. Полупроводники. Москва : Мир, 1982. 560 с.
  8. Wittry D. B., Kyser D. F. Measurements of diffusion lengths in direct-gap semiconductors by electron beam excitation // Journal of Applied Physics. 1967. Vol. 38, iss. 1. P. 375–382. https://doi.org/10.1063/1.1708984
  9. Rao-Sahib T. S., Wittry D. B. Measurements of diffusion lengths in p-type gallium arsenide by electron beam excitation // Journal of Applied Physics. 1969. Vol. 40, iss. 9. P. 3745–3750. https://doi.org/10.1063/1.1658265
  10. Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений. Москва : Наука, 1964. 272 с.
  11. Понтрягин Л. С. Обыкновенные дифференциальные уравнения. Москва : Наука, 1965. 332 с.
  12. Polyakov A. N., Smirnova A. N., Stepovich M. A., Turtin D. V. Mathematical model of qualitative properties of exciton diffusion generated by electron probe in a homogeneous semiconductor material // Lobachevskii Journal of Mathematics. 2018. Vol. 39, iss. 2. P. 259–262. https://doi.org/10.1134/S199508021802021X
  13. Turtin D. V., Seregina E. V., Stepovich M. A. Qualitative analysis of a class of differential equations of heat and mass transfer in a condensed material // Journal of Mathematical Sciences (United States). 2020. Vol. 259, iss. 1. P. 166–174. https://doi.org/10.1007/s10958-020-05008-4
  14. Туртин Д. В., Степович М. А., Калманович В. В., Картанов А. А. О корректности математических моделей диффузии и катодолюминесценции // Таврический вестник информатики и математики. 2021. № 1 (50). С. 81–100. https://doi.org/10.37279/1729-3901-2021-20-1-81-100, EDN: CJKSHG
  15. Калманович В. В., Серегина Е. В., Степович М. А. Математическое моделирование явлений тепломассопереноса, обусловленных взаимодействием электронных пучков с многослойными планарными полупроводниковыми структурами // Известия РАН. Серия физическая. 2020. Т. 84, № 7. С. 1020–1026. https://doi.org/10.31857/S0367676520070133

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).