Реализация системы идентификации и распознавания когнитивного поведения наблюдаемого

Обложка

Цитировать

Полный текст

Аннотация

В статье описывается и анализируется разработка системы идентификации и распознавания когнитивного поведения учащихся для определения заинтересованности по мимике лица. Цель исследования — найти подходящие технологии для реализации данной системы. Определение эмоций позволит организовать контроль за качеством учебного процесса, провести статистику когнитивного поведения студентов во время проведения занятий и показать уровень заинтересованности обучаемых в излагаемом материале. Система идентификации позволит автоматически определять и регистрировать время прихода и ухода студентов в режиме реального времени. На основе совместного применения метода Виолы – Джонса и метода ближайших соседей с использованием гистограмм центрально-симметричных локальных бинарных образов разработана система распознавания лиц в видеопоследовательности в реальном времени. Описана структура проекта и разработано программное обеспечение на языке программирования Python с использованием библиотеки с открытым исходным кодом Keras. Разработанная система состоит из двух подсистем:  идентификации и  распознавания когнитивного поведения. Научная новизна заключается в комплексном подходе к разработке и исследованию алгоритмов распознавания и идентификации лиц в режиме реального времени для решения прикладных задач.

Об авторах

Олег Михайлович Демиденко

Гомельский государственный университет имени Франциска Скорины

ORCID iD: 0000-0002-0601-0758
Scopus Author ID: 6602779227
ResearcherId: AAD-2488-2019
Белоруссия, 246019, г. Гомель, ул. Советская, 104

Наталья Андреевна Аксёнова

Гомельский государственный университет имени Франциска Скорины

ORCID iD: 0000-0002-1558-3064
Белоруссия, 246019, г. Гомель, ул. Советская, 104

Андрей Валерьевич Воруев

Гомельский государственный университет имени Франциска Скорины

ORCID iD: 0000-0003-0235-0875
Scopus Author ID: 57426557700
Белоруссия, 246019, г. Гомель, ул. Советская, 104

Список литературы

  1. Demidenko O. M., Aksionova N. A. Development of a machine vision system for image recognition of design estimates. Nonlinear Phenomena in Complex Systems, 2022, vol. 25, iss. 2, pp. 159–167. https://doi.org/10.33581/1561-4085-2022-25-2-159-167
  2. Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, iss. 12, pp. 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
  3. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001, vol. 1, pp. 511–518. https://doi.org/10.1109/CVPR.2001.990517
  4. Shapiro L., Stockman G. Computer Vision. London, Pearson, 2006. 752 p.
  5. Aksionova N. A., Demidenko O. M., Voruev A. V. Implementation of a system for determining students’ emotions by their facial expressions. Proceedings of Francisk Skorina Gomel State University. Natural Sciences, 2022, iss. 3 (132), pp. 82–87 (in Russian).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».